369 research outputs found

    Novel oral anticoagulants for the prevention of thromboembolism in patients with atrial fibrillation

    No full text
    The most significant complication of atrial fibrillation (AF) is thromboembolic stroke. Furthermore, the consequences of AF-related stroke tend to be more severe than those of other aetiologies. The need for safe, effective and convenient anticoagulation is clear. Warfarin is the current mainstay of treatment but its prescription and use remains sub-optimal, despite clear evidence and guidance to support its use. Many patients taking warfarin spend a significant amount of time subtherapeutically anticoagulated and the requirement for regular monitoring of warfarin’s anticoagulant activity is both inconvenient and costly. Novel oral anticoagulants promise more predictable and convenient anticoagulation. They have potential superiority over warfarin for preventing thromboembolic stroke and appear to be associated with fewer haemorrhagic effects. Understanding the important background to the novel agents presents an opportunity to tailor anticoagulant treatment to the individual. This should allow a greater proportion of the eligible population access to effective anticoagulation. Furthermore, it should reduce their exposure to the risk of both thromboembolic and haemorrhagic stroke and their potentially devastating consequences

    Dynamic Changes in High-Sensitivity Cardiac Troponin I in Response to Anthracycline-Based Chemotherapy

    Get PDF
    Aims: Treatment advances have improved cancer-related outcomes and shifted interest towards minimising long-term iatrogenic complications, particularly chemotherapy-related cardiotoxicity. High-sensitivity cardiac troponin I (hs-cTnI) assays accurately quantify very low concentrations of plasma troponin and enable early detection of cardiomyocyte injury prior to the development of myocardial dysfunction. The profile of hs-cTnI in response to anthracycline-based treatment has not previously been described. Materials and methods: This was a multicentre prospective observational cohort study. Female patients with newly diagnosed invasive breast cancer scheduled to receive anthracycline-based (epirubicin) chemotherapy were recruited. Blood sampling was carried out before and 24 h after each cycle. Hs-cTnI concentrations were measured using the Abbott ARCHITECTSTAT assay. Results: We recruited 78 women with a median (interquartile range) age of 52 (49–61) years. The median baseline troponin concentration was 1 (1–4) ng/l and the median cumulative epirubicin dose was 394 (300–405) mg/m2. Following an initial 33% fall 24 h after anthracycline dosing (P < 0.001), hs-cTnI concentrations increased by a median of 50% (P < 0.001) with each successive treatment cycle. In total, 45 patients had troponin measured immediately before the sixth treatment cycle, 21 (46.6%) of whom had hs-cTnI concentrations ≄16 ng/l, indicating myocardial injury. Plasma hs-cTnI concentrations before the second treatment cycle were a strong predictor of subsequent myocardial injury. Conclusions: Cardiotoxicity arising from anthracycline therapy is detectable in the earliest stages of breast cancer treatment and is cumulative with each treatment cycle. This injury is most reliably determined from blood sampling carried out before rather than after each treatment cycle

    Layers of Cold Dipolar Molecules in the Harmonic Approximation

    Full text link
    We consider the N-body problem in a layered geometry containing cold polar molecules with dipole moments that are polarized perpendicular to the layers. A harmonic approximation is used to simplify the hamiltonian and bound state properties of the two-body inter-layer dipolar potential are used to adjust this effective interaction. To model the intra-layer repulsion of the polar molecules, we introduce a repulsive inter-molecule potential that can be parametrically varied. Single chains containing one molecule in each layer, as well as multi-chain structures in many layers are discussed and their energies and radii determined. We extract the normal modes of the various systems as measures of their volatility and eventually of instability, and compare our findings to the excitations in crystals. We find modes that can be classified as either chains vibrating in phase or as layers vibrating against each other. The former correspond to acoustic and the latter to optical phonons. Instabilities can occur for large intra-layer repulsion and produce diverging amplitudes of molecules in the outer layers. Lastly, we consider experimentally relevant regimes to observe the structures.Comment: 17 pages, 20 figures, accepted versio

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    • 

    corecore