39,161 research outputs found

    Electron dynamics in the normal state of cuprates: spectral function, Fermi surface and ARPES data

    Get PDF
    An influence of the electron-phonon interaction on excitation spectrum and damping in a narrow band electron subsystem of cuprates has been investigated. Within the framework of the t-J model an approach to solving a problem of account of both strong electron correlations and local electron-phonon binding with characteristic Einstein mode ω0\omega _0 in the normal state has been presented. In approximation Hubbard-I it was found an exact solution to the polaron bands. We established that in the low-dimensional system with a pure kinematic part of Hamiltonian a complicated excitation spectrum is realized. It is determined mainly by peculiarities of the lattice Green's function. In the definite area of the electron concentration and hopping integrals a correlation gap may be possible on the Fermi level. Also, in specific cases it is observed a doping evolution of the Fermi surface. We found that the strong electron-phonon binding enforces a degree of coherence of electron-polaron excitations near the Fermi level and spectrum along the nodal direction depends on wave vector module weakly. It corresponds to ARPES data. A possible origin of the experimentally observed kink in the nodal direction of cuprates is explained by fine structure of the polaron band to be formed near the mode -ω0\omega _0

    Tunable graphene bandgaps from superstrate mediated interactions

    Full text link
    A theory is presented for the strong enhancement of graphene-on-substrate bandgaps by attractive interactions mediated through phonons in a polarizable superstrate. It is demonstrated that gaps of up to 1eV can be formed for experimentally achievable values of electron-phonon coupling and phonon frequency. Gap enhancements range between 1 and 4, indicating possible benefits to graphene electronics through greater bandgap control for digital applications, lasers, LEDs and photovoltaics through the relatively simple application of polarizable materials such as SiO2 and Si3N4.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Bipolaron-SO(5) Non-Fermi Liquid in a Two-channel Anderson Model with Phonon-assisted Hybridizations

    Full text link
    We analyze non-Fermi liquid (NFL) properties along a line of critical points in a two-channel Anderson model with phonon-assisted hybridizations. We succeed in identifying hidden nonmagnetic SO(5) degrees of freedom for valence-fluctuation regime and analyze the model on the basis of boundary conformal field theory. We find that the NFL spectra along the critical line, which is the same as those in the two-channel Kondo model, can be alternatively derived by a fusion in the nonmagnetic SO(5) sector. The leading irrelevant operators near the NFL fixed points vary as a function of Coulomb repulsion U; operators in the spin sector dominate for large U, while those in the SO(5) sector do for small U, and we confirm this variation in our numerical renormalization group calculations. As a result, the thermodynamic singularity for small U differs from that of the conventional two-channel Kondo problem. Especially, the impurity contribution to specific heat is proportional to temperature and bipolaron fluctuations, which are coupled electron-phonon fluctuations, diverge logarithmically at low temperatures for small U.Comment: 16 pages, 4 figures, 3 table

    Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells

    Full text link
    Frequency dependencies of optical characteristics (reflection, transmission and absorption of light) of a quantum well are investigated in a vicinity of interband resonant transitions in a case of two closely located excited energy levels. A wide quantum well in a quantizing magnetic field directed normally to the quantum-well plane, and monochromatic stimulating light are considered. Distinctions between refraction coefficients of barriers and quantum well, and a spatial dispersion of the light wave are taken into account. It is shown that at large radiative lifetimes of excited states in comparison with nonradiative lifetimes, the frequency dependence of the light reflection coefficient in the vicinity of resonant interband transitions is defined basically by a curve, similar to the curve of the anomalous dispersion of the refraction coefficient. The contribution of this curve weakens at alignment of radiative and nonradiative times, it is practically imperceptible at opposite ratio of lifetimes . It is shown also that the frequency dependencies similar to the anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure

    Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well

    Full text link
    Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and two closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.Comment: 7 pages, 5 figure

    A Laplace Transform Method for Molecular Mass Distribution Calculation from Rheometric Data

    Full text link
    Polydisperse linear polymer melts can be microscopically described by the tube model and fractal reptation dynamics, while on the macroscopic side the generalized Maxwell model is capable of correctly displaying most of the rheological behavior. In this paper, a Laplace transform method is derived and different macroscopic starting points for molecular mass distribution calculation are compared to a classical light scattering evaluation. The underlying assumptions comprise the modern understanding on polymer dynamics in entangled systems but can be stated in a mathematically generalized way. The resulting method is very easy to use due to its mathematical structure and it is capable of calculating multimodal molecular mass distributions of linear polymer melts

    Two-particle scattering theory for anyons

    Get PDF
    We consider potential scattering theory of a nonrelativistic quantum mechanical 2-particle system in R^2 with anyon statistics. Sufficient conditions are given which guarantee the existence of wave operators and the unitarity of the S-matrix. As examples the rotationally invariant potential well and the delta-function potential are discussed in detail. In case of a general rotationally invariant potential the angular momentum decomposition leads to a theory of Jost functions. The anyon statistics parameter gives rise to an interpolation for angular momenta analogous to the Regge trajectories for complex angular momenta. Levinson's theorem is adapted to the present context. In particular we find that in case of a zero energy resonance the statistics parameter can be determined from the scattering phase.Comment: 42 pages of RevTex and 5 figures (included

    Asynchronous Multi-Context Systems

    Full text link
    In this work, we present asynchronous multi-context systems (aMCSs), which provide a framework for loosely coupling different knowledge representation formalisms that allows for online reasoning in a dynamic environment. Systems of this kind may interact with the outside world via input and output streams and may therefore react to a continuous flow of external information. In contrast to recent proposals, contexts in an aMCS communicate with each other in an asynchronous way which fits the needs of many application domains and is beneficial for scalability. The federal semantics of aMCSs renders our framework an integration approach rather than a knowledge representation formalism itself. We illustrate the introduced concepts by means of an example scenario dealing with rescue services. In addition, we compare aMCSs to reactive multi-context systems and describe how to simulate the latter with our novel approach.Comment: International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014). Proceedings of the International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), pages 31-37, technical report, ISSN 1430-3701, Leipzig University, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-15056
    corecore