32,693 research outputs found
Generating loop graphs via Hopf algebra in quantum field theory
We use the Hopf algebra structure of the time-ordered algebra of field
operators to generate all connected weighted Feynman graphs in a recursive and
efficient manner. The algebraic representation of the graphs is such that they
can be evaluated directly as contributions to the connected n-point functions.
The recursion proceeds by loop order and vertex number.Comment: 22 pages, LaTeX + AMS + eepic; new section with alternative recursion
formula added, further minor changes and correction
Precision CW laser automatic tracking system investigated
Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range
Behavioural clusters and predictors of performance during recovery from stroke
We examined the patterns and variability of recovery post-stroke in multiple behavioral domains. A large cohort of first time stroke patients with heterogeneous lesions was studied prospectively and longitudinally at 1-2 weeks, 3 months and one year post-injury with structural MRI to measure lesion anatomy and in-depth neuropsychological assessment. Impairment was described at all timepoints by a few clusters of correlated deficits. The time course and magnitude of recovery was similar across domains, with change scores largely proportional to the initial deficit and most recovery occurring within the first three months. Damage to specific white matter tracts produced poorer recovery over several domains: attention and superior longitudinal fasciculus II/III, language and posterior arcuate fasciculus, motor and corticospinal tract. Finally, after accounting for the severity of the initial deficit, language and visual memory recovery/outcome was worse with lower education, while the occurrence of multiple deficits negatively impacted attention recovery
Profile alterations of a symmetrical light pulse coming through a quantum well
The theory of a response of a two-energy-level system, irradiated by
symmetrical light pulses, has been developed.(Suchlike electronic system
approximates under the definite conditions a single ideal quantum well (QW) in
a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or
in magnetic field absence.) The general formulae for the time-dependence of
non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission
{\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown
that the singularities of three types exist on the dependencies {\cal R}(t),
{\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal
A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0
takes place. The oscillations are more easily observable when
\Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection
and transparency singularities are examined when the frequency \omega_l is
detuned.Comment: 9 pages, 13 figures with caption
Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations
The bases of the theory of light reflection and absorption by low-dimensional
semiconductor objects (quantum wells, wires and dots) at both monochromatic and
pulse irradiations and at any form of light pulses are developed. The
semiconductor object may be placed in a stationary quantizing magnetic field.
As an example the case of normal light incidence on a quantum well surface is
considered. The width of the quantum well may be comparable to the light wave
length and number of energy levels of electronic excitations is arbitrary. For
Fourier-components of electric fields the integral equation (similar to the
Dyson-equation) and solutions of this equation for some individual cases are
obtained.Comment: 14 page
Draft Genome Sequence of Curtobacterium flaccumfaciens Strain UCD-AKU (Phylum Actinobacteria).
Here we present the draft genome of an actinobacterium, Curtobacterium flaccumfaciens strain UCD-AKU, isolated from a residential carpet. The genome assembly contains 3,692,614 bp in 130 contigs. This is the first member of the Curtobacterium genus to be sequenced
Monte Carlo evaluation of path integrals for the nuclear shell model
We present in detail a formulation of the shell model as a path integral and
Monte Carlo techniques for its evaluation. The formulation, which linearizes
the two-body interaction by an auxiliary field, is quite general, both in the
form of the effective `one-body' Hamiltonian and in the choice of ensemble. In
particular, we derive formulas for the use of general (beyond monopole) pairing
operators, as well as a novel extraction of the canonical (fixed-particle
number) ensemble via an activity expansion. We discuss the advantages and
disadvantages of the various formulations and ensembles and give several
illustrative examples. We also discuss and illustrate calculation of the
imaginary-time response function and the extraction, by maximum entropy
methods, of the corresponding strength function. Finally, we discuss the
"sign-problem" generic to fermion Monte Carlo calculations, and prove that a
wide class of interactions are free of this limitation.Comment: 38 pages, RevTeX v3.0, figures available upon request; Caltech
Preprint #MAP-15
Quantitative characterization of the x-ray imaging capability of rotating modulation collimators with laser light
We developed a method for making quantitative characterizations of bi-grid rotating modulation collimators (RMC ’s) that are used in a Fourier transform x-ray imager. With appropriate choices of the collimator spacings, this technique can be implemented with a beam-expanded He -Ne laser to simulate the plane wave produced by a point source at infinity even though the RMC ’s are diffraction limited at the He -Ne wavelength of 632.8 nm. The expanded beam passes through the grid pairs at a small angle with respect to their axis of rotation, and the modulated transmission through the grids as the RMC ’s rotate is detected with a photomultiplier tube. In addition to providing a quantitative characterization of the RMC ’s, the method also produces a measured point response function and provides an end-to-end check of the imaging system. We applied our method to the RMC ’s on the high-energy imaging device (HEIDI) balloon payload in its preflight configuration. We computed the harmonic ratios of the modulation time profile from the laser measurements and compared them with theoretical calculations, including the diffraction effects on irregular grids. Our results indicate the 25-in. (64-cm) x-ray imaging optics on HEIDI are capable of achieving images near the theoretical limit and are not seriously compromised by imperfections in the grids
The magnetic environment in the central region of nearby galaxies
The central regions of galaxies harbor some of the most extreme physical
phenomena, including dense stellar clusters, non-circular motions of molecular
clouds and strong and pervasive magnetic field structures. In particular, radio
observations have shown that the central few hundred parsecs of our Galaxy has
a striking magnetic field configuration. It is not yet clear whether these
magnetic structures are unique to our Milky Way or a common feature of all
similar galaxies. Therefore, we report on (a) a new radio polarimetric survey
of the central 200 pc of the Galaxy to better characterize the magnetic field
structure and (b) a search for large-scale and organized magnetized structure
in the nuclear regions of nearby galaxies using data from the Very Large Array
(VLA) archive. The high angular resolution of the VLA allows us to study the
central 1 kpc of the nearest galaxies to search for magnetized nuclear features
similar to what is detected in our own Galactic center. Such magnetic features
play a important role in the nuclear regions of galaxies in terms of gas
transport and the physical conditions of the interstellar medium in this
unusual region of galaxies.Comment: 8 pages; Proceedings for "The Universe under the Microscope" (AHAR
2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal
of Physics: Conference Series by Institute of Physics Publishing, R.
Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.
- …
