244 research outputs found

    Adaptor ShcA Protein Binds Tyrosine Kinase Tie2 Receptor and Regulates Migration and Sprouting but Not Survival of Endothelial Cells

    Get PDF
    Angiopoietin-1 can promote migration, sprouting, and survival of endothelial cells through activation of different signaling pathways triggered by the Tie2 tyrosine kinase receptor. ShcA adapter proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to the Ras/mitogen-activated protein kinase pathway. Here we report the identification of an interaction between the adapter protein ShcA and the cytoplasmic domain of Tie2 through in vitro co-immunoprecipitation analysis. Stimulation of endogenous Tie2 in endothelial cells with its ligand angiopoietin-1 increased its association with ShcA and phosphorylation of the adapter protein. The interaction requires the SH2 domain of ShcA and the tyrosine phosphorylation of Tie2 as shown by pull-down experiments. Furthermore, Tyr-1101 of Tie2 was identified as the primary binding site for the SH2 domain of ShcA. Overexpression of a dominant-negative form of ShcA affects angiopoietin-1-induced chemotaxis and sprouting, although it has no effect on survival of endothelial cells. Furthermore, this mutant partially reduces the tyrosine phosphorylation of the regulatory p85 subunit of phosphatidylinositol 3-kinase. Together, our results identified a novel interaction between Tie2 with the adapter molecule ShcA and suggested that this interaction may play a role in the regulation of migration and three-dimensional organization of endothelial cells induced by angiopoietin-1

    Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pirin (PIR) is a highly conserved nuclear protein originally isolated as an interactor of NFI/CTF1 transcription/replication factor. It is a member of the functionally diverse cupin superfamily and its activity has been linked to different biological and molecular processes, such as regulation of transcription, apoptosis, stress response and enzymatic processes. Although its precise role in these functions has not yet been defined, PIR expression is known to be deregulated in several human malignancies.</p> <p>Results</p> <p>We performed immunohistochemical analysis of PIR expression in primary samples from normal human tissues and tumors and identified a dislocation of PIR to the cytoplasm in a subset of melanomas, and a positive correlation between cytoplasmic PIR levels and melanoma progression. PIR localization was subsequently analyzed <it>in vitro </it>in melanoma cell lines through a high content immunofluorescence based approach (ImmunoCell-Array).</p> <p>Conclusions</p> <p>The high consistency between <it>in vivo </it>and <it>in vitro </it>results obtained by immunohistochemistry and ImmunoCell-Array provides a validation of the potential of ImmunoCell-Array technology for the rapid screening of putative biological markers, and suggests that cytoplasmic localization of PIR may represent a characteristic of melanoma progression.</p

    Modeling cell proliferation in human acute myeloid leukemia xenografts

    Get PDF
    Motivation: Acute myeloid leukemia (AML) is one of the most common hematological malignancies, characterized by high relapse and mortality rates. The inherent intra-tumor heterogeneity in AML is thought to play an important role in disease recurrence and resistance to chemotherapy. Although experimental protocols for cell proliferation studies are well established and widespread, they are not easily applicable to in vivo contexts, and the analysis of related time-series data is often complex to achieve. To overcome these limitations, model-driven approaches can be exploited to investigate different aspects of cell population dynamics. Results: In this work, we present ProCell, a novel modeling and simulation framework to investigate cell proliferation dynamics that, differently from other approaches, takes into account the inherent stochasticity of cell division events. We apply ProCell to compare different models of cell proliferation in AML, notably leveraging experimental data derived from human xenografts in mice. ProCell is coupled with Fuzzy Self-Tuning Particle Swarm Optimization, a swarm-intelligence settings-free algorithm used to automatically infer the models parameterizations. Our results provide new insights on the intricate organization of AML cells with highly heterogeneous proliferative potential, highlighting the important role played by quiescent cells and proliferating cells characterized by different rates of division in the progression and evolution of the disease, thus hinting at the necessity to further characterize tumor cell subpopulations. Availability and implementation: The source code of ProCell and the experimental data used in this work are available under the GPL 2.0 license on GITHUB at the following URL: https://github.com/aresio/ProCell

    WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells

    Get PDF
    Background: Development of metastases and drug resistance are still a challenge for a successful systemic treatment in breast cancer (BC) patients. One of the mechanisms that confer metastatic properties to the cell relies in the epithelial-to-mesenchymal transition (EMT). Moreover, both EMT and metastasis are partly modulated through epigenetic mechanisms, by repression or induction of specific related genes. Methods: We applied shRNAs and drug targeting approaches in BC cell lines and metastatic patient-derived xenograft (PDX) models to inhibit WDR5, the core subunit of histone H3 K4 methyltransferase complexes, and evaluate its role in metastasis regulation. Result: We report that WDR5 is crucial in regulating tumorigenesis and metastasis spreading during BC progression. In particular, WDR5 loss reduces the metastatic properties of the cells by reverting the mesenchymal phenotype of triple negative- and luminal B-derived cells, thus inducing an epithelial trait. We also suggest that this regulation is mediated by TGF\u3b21, implying a prominent role of WDR5 in driving EMT through TGF\u3b21 activation. Moreover, such EMT reversion can be induced by drug targeting of WDR5 as well, leading to BC cell sensitization to chemotherapy and enhancement of paclitaxel-dependent effects. Conclusions: We suggest that WDR5 inhibition could be a promising pharmacologic approach to reduce cell migration, revert EMT, and block metastasis formation in BC, thus overcoming resistance to standard treatments

    BS148 Reduces the Aggressiveness of Metastatic Melanoma via Sigma-2 Receptor Targeting

    Get PDF
    : The management of advanced-stage melanoma is clinically challenging, mainly because of its resistance to the currently available therapies. Therefore, it is important to develop alternative therapeutic strategies. The sigma-2 receptor (S2R) is overexpressed in proliferating tumor cells and represents a promising vulnerability to target. Indeed, we have recently identified a potent S2R modulator (BS148) that is effective in melanoma. To elucidate its mechanism of action, we designed and synthesized a BS148 fluorescent probe that enters SK-MEL-2 melanoma cells as assessed using confocal microscopy analysis. We show that S2R knockdown significantly reduces the anti-proliferative effect induced by BS148 administration, indicating the engagement of S2R in BS148-mediated cytotoxicity. Interestingly, BS148 treatment showed similar molecular effects to S2R RNA interference-mediated knockdown. We demonstrate that BS148 administration activates the endoplasmic reticulum stress response through the upregulation of protein kinase R-like ER kinase (PERK), activating transcription factor 4 (ATF4) genes, and C/EBP homologous protein (CHOP). Furthermore, we show that BS148 treatment downregulates genes related to the cholesterol pathway and activates the MAPK signaling pathway. Finally, we translate our results into patient-derived xenograft (PDX) cells, proving that BS148 treatment reduces melanoma cell viability and migration. These results demonstrate that BS148 is able to inhibit metastatic melanoma cell proliferation and migration through its interaction with the S2R and confirm its role as a promising target to treat cancer

    Retroviral gene transfer, rapid selection, and maintenance of the immature phenotype in mouse dendritic cells

    Get PDF
    We used the retroviral vector PINCO [which expresses the green fluorescent protein (GFP) as a selectable marker], to infect growth factor-dependent immature D1 dendritic cells (DC). The efficiency of infection in different experiments was between 5 and 30%, but subsequent cell sorting led to a virtually homogeneous population of GFP-positive cells. Retroviral infection did not modify the immature DC phenotype, as shown by the low expression of major histocompatibility complex and co-stimulatory molecules. Furthermore, the GFP-positive D1 cells underwent full maturation after lipopolysaccharide treatment, as indicated by a high expression of cell-surface MHC and co-stimulatory molecules, and also by strong stimulatory activity in allogeneic mixed lymphocyte reaction. The high efficiency of this retroviral system, the rapidity of the technique, and the possibility to overcome in vitro selection make this method very attractive for the stable introduction of heterologous genes into proliferating immature mouse D1 cells. Furthermore, this approach is suitable for functional studies of new DC-specific genes involved in DC maturation and survival

    po 178 wdr5 promotes metastasis dissemination in breast cancer

    Get PDF
    Introduction The core subunit of the COMPASS-like complex, WD Repeat Domain 5 (WDR5) has a prominent role in cell self-renewal, reprogramming and Epithelial-to-Mesenchymal transition (EMT) in different tumour types. We have identified WDR5 as an epigenetic target in in vivo and in vitro shRNA screenings performed in MCF10DCIS.com (from now MCF10DCIS) breast cancer (BC) cells. Here, we show that WDR5 can regulate metastasis dissemination in BC by stimulating TGFB-induced EMT. Material and methods MCF10DCIS and MDAMB231 cells and six metastatic PDXs were used for in vivo and in vitro studies. Cells were transduced to silence WDR5 (shWDR5) or a neutral control (shLuc). Transcriptomic profiles were evaluated by RNA-seq in shLuc and shWDR5 PDXs and MCF10DCIS cells. Differentially expressed genes (DEGs) were identified using Log2FC>|0.6| and FDR t test for in vivo and in vitro experiments. Results and discussions WDR5 interference significantly inhibited tumour growth and in vitro migration of PDXs and MCF10DCIS cells and reduced metastatic burden of MDAMB231 cells in vivo . These data suggested that WDR5 may be involved in cell motility, promoting invasiveness and metastasis. Gene Ontology performed on DEGs highlighted an enrichment of functions related to EMT and TGFB signalling. Indeed, protein and mRNA levels of a series of gene implicated in EMT (e.g. SNAI1, TWIST1, CDH2, SNAI2, ZEB1) were strongly reduced in shWDR5 PDXs and MCF10DCIS cells, thus suggesting a regulatory role of WDR5 in EMT. H3K4me3 levels were globally affected and concordantly reduced at TSS level of SNAI1 and TWIST1 genes in shWDR5 MCF10DCIS cells, confirming that WDR5 can transcriptionally regulate EMT in BC. Moreover, the induction of EMT by TGFB treatment can be abrogated in WDR5-deficient cells, suggesting that the EMT induced by TGFB is WDR5-dependent. Conclusion Our evidences support a model in which WDR5 is responsible for mediating the epithelial-to-mesenchymal transition and metastasis dissemination in BC. WDR5 is essential for TGFB response and its inhibition may be a successful approach to prevent progression of metastatic BC

    The Life Span Determinant p66Shc Localizes to Mitochondria Where It Associates with Mitochondrial Heat Shock Protein 70 and Regulates Trans-membrane Potential

    Get PDF
    P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown. Here we report the following three findings. (i) The apoptosome can be properly activated in vitro in the absence of p66Shc only if purified cytochrome c is supplied. (ii) Cytochrome c release after oxidative signals is impaired in the absence of p66Shc. (iii) p66Shc induces the collapse of the mitochondrial trans-membrane potential after oxidative stress. Furthermore, we showed that a fraction of cytosolic p66Shc localizes within mitochondria where it forms a complex with mitochondrial Hsp70. Treatment of cells with ultraviolet radiation induced the dissociation of this complex and the release of monomeric p66Shc. We propose that p66Shc regulates the mitochondrial pathway of apoptosis by inducing mitochondrial damage after dissociation from an inhibitory protein complex. Genetic and biochemical evidence suggests that mitochondria regulate life span through their effects on the energetic metabolism (mitochondrial theory of aging). Our data suggest that mitochondrial regulation of apoptosis might also contribute to life span determination

    Long non‐coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation

    Get PDF
    Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs
    • 

    corecore