21 research outputs found
Exogenous phospholipids specifically affect transmembrane potential of brain mitochondria and cytochrome C release.
Release of cytochrome c, a decrease of membrane potential (Deltapsi(m)), and a reduction of cardiolipin (CL) of rat brain mitochondria occurred upon incubation in the absence of respiratory substrates. Since CL is critical for mitochondrial functioning, CL enrichment of mitochondria was achieved by fusion with CL liposomes. Fusion was triggered by potassium phosphate at concentrations producing mitochondrial permeability transition pore opening but not cytochrome c release, which was observed only at10 mm. Cyclosporin A inhibited phosphate-induced CL fusion, whereas Pronase pretreatment of mitochondria abolished it, suggesting that mitochondrial permeability transition pore and protein(s) are involved in the fusion process. Phosphate-dependent fusion was enhanced in respiratory state 3 and influenced by phospholipid classes in the order CLphosphatidylglycerol (PG)phosphatidylserine. The probe 10-nonylacridine orange indicated that fused CL had migrated to the inner mitochondrial membrane. In state 3, CL enrichment of mitochondria resulted in a pH decrease in the intermembrane space. Cytofluorimetric analysis of mitochondria stained with 3,3'-diexyloxacarbocyanine iodide and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzymidazolylcarbocyanine iodide showed Deltapsi(m) increase upon fusion with CL or PG. In contrast, phosphatidylserine fusion required Deltapsi(m) consumption, suggesting that Deltapsi(m) is the driving force in mitochondrial phospholipid importation. Moreover, enrichment with CL and PG brought the low energy mitochondrial population to high Deltapsi(m) values and prevented phosphate-dependent cytochrome c release
Rat Brain Cortex Mitochondria Release Group II Secretory Phospholipase A2 under Reduced Membrane Potential
Activation of brain mitochondrial phospholipase(s) A(2) (PLA(2)) might contribute to cell damage and be involved in neurodegeneration. Despite the potential importance of the phenomenon, the number, identities, and properties of these enzymes are still unknown. Here, we demonstrate that isolated mitochondria from rat brain cortex, incubated in the absence of respiratory substrates, release a Ca(2+)-dependent PLA(2) having biochemical properties characteristic to secreted PLA(2) (sPLA(2)) and immunoreacting with the antibody raised against recombinant type IIA sPLA(2) (sPLA(2)-IIA). Under identical conditions, no release of fumarase in the extramitochondrial medium was observed. The release of sPLA(2) from mitochondria decreases when mitochondria are incubated in the presence of respiratory substrates such as ADP, malate, and pyruvate, which causes an increase of transmembrane potential determined by cytofluorimetric analysis using DiOC(6)(3) as a probe. The treatment of mitochondria with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone slightly enhances sPLA(2) release. The increase of sPLA(2) specific activity after removal of mitochondrial outer membrane indicates that the enzyme is associated with mitoplasts. The mitochondrial localization of the enzyme has been confirmed by electron microscopy in U-251 astrocytoma cells and by confocal laser microscopy in the same cells and in PC-12 cells, where the structurally similar isoform type V-sPLA(2) has mainly nuclear localization. In addition to sPLA(2), mitochondria contain another phospholipase A(2) that is Ca(2+)-independent and sensitive to bromoenol lactone, associated with the outer mitochondrial membrane. We hypothesize that, under reduced respiratory rate, brain mitochondria release sPLA(2)-IIA that might contribute to cell damage
The energy blockers bromopyruvate and lonidamine lead GL15 glioblastoma cells to death by different p53-dependent routes
The energy metabolism of tumor cells relies on aerobic glycolysis rather than mitochondrial oxidation. This difference between normal and cancer cells provides a biochemical basis for new therapeutic strategies aimed to block the energy power plants of cells. The effects produced by the energy blockers bromopyruvate (3BP) and lonidamine (LND) and the underlying biochemical mechanisms were investigated in GL15 glioblastoma cells. 3BP exerts early effects compared to LND, even though both drugs lead cells to death but by different routes. A dramatic decrease of ATP levels occurred after 1 hour treatment with 3BP, followed by cytochrome c and hexokinase II degradation, and by the decrease of both LC3I/LC3II ratio and p62, markers of an autophagic flux. In addition, Akt(Ser 473) and p53(Ser 15 /Ser 315) dephosphorylation occurred. In LND treatment, sustained ATP cellular levels were maintained up to 40 hours. The autophagic response of cells was overcome by apoptosis that was preceded by phosphatidylinositol disappearance and pAkt decrease. This last event favored p53 translocation to mitochondria triggering a p53-dependent apoptotic route, as observed at 48 and 72 hours. Adversely, in 3BP treatment, phospho-p53 dephosphorylation targeted p53 to MDM2-dependent proteolysis, thus channeling cells to irreversible autophagy
Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted ?? T cells
Background: Evidences from mice and human beings indicate that ?? T cells could be relevant in recognition of stress-induced self and/or yet unidentified inhaled foreign antigens. Their specificity differs from classic MHC-restricted ?? T cells and involves the immunoglobulin-like structure of the ?? T-cell receptor with the recognition of small organic molecules, alkylamines, and self lipid compounds presented by CD1+ dendritic cells.Objective: Because CD1 receptors are mainly devoted to lipid antigen presentation, we sought to determine whether exogenous pollen membrane lipids may act as allergens for CD1-restricted ?? T cells.Methods: Peripheral blood and nasal mucosa-associated ?? T cells were cloned from normal controls and cypress-sensitive subjects and tested for their antigen specificity and CD1-restriction with phospholipids extracted from tree pollen grains, as well with other natural or synthetic compounds. Phospholipid reactivity of cloned ?? T cells was measured by mean of proliferative response and cytokine release as well as by testing their helper activity on IgE production in vitro and in vivo.Results: Cloned ?? T lymphocytes from subjects with allergy, but not normal controls, were found to recognize pollen-derived phosphatidyl-ethanolamine (PE) in a CD1d-restricted fashion. Only 16:0/18:2 and 18:2/18:2 PE were stimulatory, whereas no response was recorded for disaturated PE, phosphatidylcholine, neutral lipids, or protein extract. Proliferating clones secreted both TH1-type and TH2-type cytokines and drove IgE production in vitro and in vivo.Conclusion: CD1d-restricted ?? T cells specific for phospholipids can represent a key mucosal regulatory subset for the control of early host reactivity against tree pollens.Clinical implications: By knowing how lipid allergen constituents interact with mucosal immune system, we can expand our possibilities in diagnostic and therapeutic interventions
Clostridium difficile toxin B induces senescence in enteric glial cells: A potential new mechanism of Clostridium difficile pathogenesis
Clostridium difficile infection causes nosocomial/antibiotic-associated diarrhea and pseudomembranous colitis, with dramatic incidence/mortality worldwide. C. difficile virulence factors are toxin A and B (TcdB) which cause cytopathic/cytotoxic effects and inflammation. Until now studies were focused on molecular effects of C. difficile toxins on different cells while unexplored aspect is the status/fate of cells that survived their cytotoxicity. Recently we demonstrated that EGC are susceptible to TcdB cytotoxicity, but several EGC survived and were irreversibly cell-cycle arrested and metabolically active, suggesting that EGC could became senescent. This is important because allowed us to evaluate the not explored status/fate of cells surviving Tcds cytotoxicity, and particularly if TcdB induces senescence in EGCs. Rat-transformed EGCs were treated with 10 ng/ml TcdB for 6 h-48 h, or for 48 h, followed by incubation for additional 4 or 11 days in absence of TcdB (6 or 13 total days). Senescence markers/effectors were examined by specific assays. TcdB induces senescence in EGCs, as demonstrated by the senescence markers: irreversible cell-cycle arrest, senescence-associated-β‑galactosidase positivity, flat morphology, early and persistent DNA damage (ATM and H2AX phosphorylation), p27 overexpression, pRB hypophosphorylation, c‑Myc, cyclin B1, cdc2 and phosphorylated-cdc2 downregulation, Sirtuin‑2 and Sirtuin‑3 overexpression. TcdB-induced EGC senescence is dependent by JNK and AKT activation but independent by ROS, p16 and p53/p21 pathways. In conclusion, TcdB induces senescence in EGCs. The extrapolation of these results to CDI leads to hypothesize that EGC that survived TcdB, once they have acquired a senescence state, could cause IBS and IBD due to persistent inflammation, transfer of senescence status and stimulation of pre-neoplastic cells
Human CD1-restricted T cell recognition of lipids from pollens
Plant pollens are an important source of environmental antigens that stimulate allergic responses. In addition to acting as vehicles for foreign protein antigens, they contain lipids that incorporate saturated and unsaturated fatty acids, which are necessary in the reproduction of higher plants. The CD1 family of nonpolymorphic major histocompatibility complex–related molecules is highly conserved in mammals, and has been shown to present microbial and self lipids to T cells. Here, we provide evidence that pollen lipids may be recognized as antigens by human T cells through a CD1-dependent pathway. Among phospholipids extracted from cypress grains, phosphatidyl-choline and phosphatidyl-ethanolamine were able to stimulate the proliferation of T cells from cypress-sensitive subjects. Recognition of phospholipids involved multiple cell types, mostly CD4+ T cell receptor for antigen (TCR)ß+, some CD4–CD8– TCR+, but rarely V24i+ natural killer–T cells, and required CD1a+ and CD1d+ antigen presenting cell. The responding T cells secreted both interleukin (IL)-4 and interferon-, in some cases IL-10 and transforming growth factor-ß, and could provide help for immunoglobulin E (IgE) production. Responses to pollen phospholipids were maximally evident in blood samples obtained from allergic subjects during pollinating season, uniformly absent in Mycobacterium tuberculosis–exposed health care workers, but occasionally seen in nonallergic subjects. Finally, allergic, but not normal subjects, displayed circulating specific IgE and cutaneous weal and flare reactions to phospholipids
Enteric glial cells counteract Clostridium difficile Toxin B through a NADPH oxidase/ROS/JNK/caspase-3 axis, without involving mitochondrial pathways
Enteric glial cells (EGCs) are components of the intestinal epithelial barrier essential for regulating the enteric nervous system. Clostridium difficile is the most common cause of antibiotic-associated colitis, toxin B (TcdB) being the major virulence factor, due to its ability to breach the intestinal epithelial barrier and to act on other cell types. Here we investigated TcdB effects on EGCs and the activated molecular mechanisms. Already at 2 hours, TcdB triggered ROS formation originating from NADPH-oxidase, as demonstrated by their reduction in the presence of the NADPH-oxidase inhibitor ML171. Although EGCs mitochondria support almost completely the cellular ATP need, TcdB exerted weak effects on EGCs in terms of ATP and mitochondrial functionality, mitochondrial ROS production occurring as a late event. ROS activated the JNK signalling and overexpression of the proapoptotic Bim not followed by cytochrome c or AIF release to activate the downstream apoptotic cascade. EGCs underwent DNA fragmentation through activation of the ROS/JNK/caspase-3 axis, evidenced by the ability of ML171, N-acetylcysteine, and the JNK inhibitor SP600125 to inhibit caspase-3 or to contrast apoptosis. Therefore, TcdB aggressiveness towards EGCs is mainly restricted to the cytosolic compartment, which represents a peculiar feature, since TcdB primarily influences mitochondria in other cellular types
Palmitate lipotoxicity in enteric glial cells: Lipid remodeling and mitochondrial ROS are responsible for cyt c release outside mitochondria
Enteric glial cells (EGCs) are components of the enteric nervous system, an organized structure that controls gut functions. EGCs may be vulnerable to different agents, such as bacterial infections that could alter the intestinal epithelial barrier, allowing bacterial toxins and/or other agents possessing intrinsic toxic effect to access cells. Palmitate, known to exhibit lipotoxicity, is released in the gut during the digestion process. In this study, we investigated the lipotoxic effect of palmitate in cultured EGCs, with particular emphasis on palmitate-dependent intracellular lipid remodeling. Palmitate but not linoleate altered mitochondrial and endoplasmic reticulum lipid composition. In particular, the levels of phosphatidic acid, key precursor of phospholipid synthesis, increased, whereas those of mitochondrial cardiolipin (CL) decreased; in parallel, phospholipid remodeling was induced. CL remodeling (chains shortening and saturation) together with palmitate-triggered mitochondrial burst, caused cytochrome c (cyt c) detachment from its CL anchor and accumulation in the intermembrane space as soluble pool. Palmitate decreased mitochondrial membrane potential and ATP levels, without mPTP opening. Mitochondrial ROS permeation into the cytosol and palmitate-induced ER stress activated JNK and p38, culminating in Bim and Bax overexpression, factors known to increase the outer mitochondrial membrane permeability. Overall, in EGCs palmitate produced weakening of cyt c-CL interactions and favoured the egress of the soluble cyt c pool outside mitochondria to trigger caspase-3-dependent viability loss. Elucidating the mechanisms of palmitate lipotoxicity in EGCs may be relevant in gut pathological conditions occurring in vivo such as those following an insult that may damage the intestinal epithelial barrier