7 research outputs found

    A Red Red Rose

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1831/thumbnail.jp

    My Jean

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1797/thumbnail.jp

    Stopping by woods on a Snowy Evening

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1803/thumbnail.jp

    Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas

    Get PDF
    BACKGROUND: Gliomas are the most common type of malignant brain and other CNS tumors, accounting for 80.8% of malignant primary brain and CNS tumors. They cause significant morbidity and mortality. This study investigates the intersection between age and sex to better understand variation of incidence and survival for glioma in the United States. METHODS: Incidence data from 2000 to 2017 were obtained from CBTRUS, which obtains data from the NPCR and SEER, and survival data from the CDC\u27s NPCR. Age-adjusted incidence rate ratios (IRR) per 100 000 were generated to compare male-to-female incidence by age group. Cox proportional hazard models were performed by age group, generating hazard ratios to assess male-to-female survival differences. RESULTS: Overall, glioma incidence was higher in males. Male-to-female incidence was lowest in ages 0-9 years (IRR: 1.04, 95% CI: 1.01-1.07, P = .003), increasing with age, peaking at 50-59 years (IRR: 1.56, 95% CI: 1.53-1.59, P \u3c .001). Females had worse survival for ages 0-9 (HR: 0.93, 95% CI: 0.87-0.99), though male survival was worse for all other age groups, with the difference highest in those 20-29 years (HR: 1.36, 95% CI: 1.28-1.44). Incidence and survival differences by age and sex also varied by histological subtype of glioma. CONCLUSIONS: To better understand the variation in glioma incidence and survival, investigating the intersection of age and sex is key. The current work shows that the combined impact of these variables is dependent on glioma subtype. These results contribute to the growing understanding of sex and age differences that impact cancer incidence and survival

    RC 2020: Reversible Computation: Extending Horizons of Computing

    No full text
    Reversible computation allows computation to proceed not only in the standard, forward direction, but also backward, recovering past states. While reversible computation has attracted interest for its multiple applications, covering areas as different as low-power computing, simulation, robotics and debugging, such applications need to be supported by a clear understanding of the foundations of reversible computation. We report below on many threads of research in the area of foundations of reversible computing, giving particular emphasis to the results obtained in the framework of the European COST Action IC1405, entitled “Reversible Computation - Extending Horizons of Computing”, which took place in the years 2015–2019. </p
    corecore