AN INVESTIGATION OF THE ACOUSTICAL PROPERTIES OF THE TRUMPET MOUTHPIECE

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF MUSIC

By

Robert M. Lanes, B. S. Denton, Texas

August, 1970

PREFACE

Purpose of the Study
The purpose of this study was to present a comprehensive analysis of the acoustical properties of the trumpet mouthpiece. The first section will be concerned with the individual parts of the mouthpiece and their interrelationship. The second portion of the study will be the physical analysis of three commonly used trumpet mouthpieces. For this study, five examples of each size have been selected. The third section will present a tonal analysis of the selected mouthpieces.

These investigative procedures will attempt to recognize any relationships between the individual mouthpieces and the resulting tones.

TABLE OF CONTENTS
Page
LIST OF TABLES. v
LIST OF ILLUSTRATIONS vii
Chapter
I. THE TRUMPET MOUTHPIECE 1
II. THE PHYSICAL ANALYSIS OF SELECTED MOUTHPIECES 16
III. THE TONAL ANALYSIS OF SELECTED MOUTHPIECES 24
IV. PRESENTATION OF DATA 31
V. ANALYSIS OF DATA AND CONCLUSION. 42
APPENDIX 47
A. EVALUATION OF INDIVIDUAL PLAYERTESTS FOR EACH OF THE MOUTHPIECES
B. EVALUATION OF INDIVIDUAL MOUTHPIECES FOREACH OF SIX TONES
B IBLIOGRAPHY. 100

LIST OF TABLES

Table Page
I. Physical Analysis of Selected Mouthpieces. 23
II. Physical Analysis Averages for Three Mouthpiece Sizes 23
III. Tonal Analysis of Selected Mouthpieces 29
IV. Comparative Relationship of Selected Mouthpieces 43
V. Exceptions to the Established Behavioral Pattern. 44
VI. Physical Analysis of Selected Mouthpieces. 45
VII. Evaluation of Individual Players Tests For Mouthpiece No. 1 48
VIII, Evaluation of Individual Players Tests For Mouthpiece No. 2 51
IX. Evaluation of Individual P1ayers Tests For Mouthpiece No. 3 54
X. Evaluation of Individual Players Tests For Mouthpiece No. 4 57
XI. Evaluation of Individual Players Tests For Mouthpiece No. 5 60
XII. Evaluation of Individual Players Tests For Mouthpiece No. 6 63
XIII. Evaluation of Individual Players Tests For Mouthpiece No. 7 66
XIV. Evaluation of Individual Players Tests For Mouthpiece No. 8 69
XV. Evaluation of Individual Players Tests
for Mouthpiece No. 9. 72
XVI. Evaluation of Individual Players Tests for Mouthpiece No. 10 75
XVII. Evaluation of Individual Players Tests for Mouthpiece No. 11 78
XVIII. Evaluation of Individual Players Tests for Mouthpiece No. 12 81
XIX. Evaluation of Individual Players Tests for Mouthpiece No. 13 84
XX. Evaluation of Individual Players Tests for Mouthpiece No. 14 87
XXI. Evaluation of Individual Players Tests for Mouthpiece No. 15 90
XXII. Evaluation of Individual Mouthpieces for C5. 94
XXIII. Evaluation of Individual Mouthpieces for C4. 95
XXIV. Evaluation of Individual Mouthpieces for G 4 96
XXV. Evaluation of Individual Mouthpieces for E 5 97
XXVI. Evaluation of Individual Mouthpieces for G5. 98
XXVII. Evaluation of Individual Mouthpieces for C6. 99

LIST OF ILLUSTRATIONS

Figure Page

1. Cross Section of a Trumpet Mouthpiece. 4
2. Diagram of a Rim 5
3. Cross Section of Shoulders in Cup Contours 10
4. Cross Sections of Various Backbores. 13
5. Photograph of Fifteen Selected Mouthpieces 17
6. Photograph of Measuring the Throat 18
7. Photograph of Measuring the Inside Cup Diameter 19
8. Photograph of Measuring the Cup Depth. 20
9. Photograph of Measuring the Outer Cup Width 21
10. Photograph of Measuring the Rim Curvature. 21
11. Photograph of Measuring the Rim Bite 22
12. Diagram of Equipment 25
13. Photograph of Equipment 26
14. Harmonic Series of Trumpet 26
15. Playing Portion of Test 27
16. Spectrum of C5 Produced by Selected Mouthpieces 32
17. Spectrum of C4 Produced by Selected Mouthpieces 34
18. Spectrum of G4 Produced by Selected Mouthpieces 35
Figure Page
19. Spectrum of E5 Produced by Selected Mouthpieces 37
20. Spectrum of G5 Produced by Selected Mouthpieces 39
21. Spectrum of C6 Produced by Selected Mouthpieces 41

CHAPTER I

THE TRUMPET MOUTHPIECE

The Functions of the Mouthpiece
"The mouthpiece is probably the greatest single factor in tone quality and proper tone production, outside of the player himself." ${ }^{1}$ To the devoted trumpet player, his mouthpiece is "the most intimate, personal, and cherished part of his instrument, and is the physical source of some of its most admired qualities." ${ }^{2}$

To determine the acoustical value of a mouthpiece, it is essential to establish the method of tone production for the trumpet. Like all brass instruments, the trumpet depends on the vibrations of the lips, which are "very slightly elastic membranous tongues, loaded with much inelastic tissue containing water, and they would consequently vibrate very slowly, if they could be brought to vibrate by themselves." 3

The mouthpiece can be defined as "an enlargement of the bore to which the lips of the player are applied to form a

[^0]kind of double reed. ${ }^{4}$ When the lips are placed against the mouthpiece, only that amount of lip within the diameter of the mouthpiece cup is permitted to vibrate.

It is at this point in sound production that other physiological factors are required.

> The breath from [the player's] lungs produces a compression of air in his mouth-cavity. The tongue, acting as a valve, is sharply withdrawn so as to admit the breath between the slightly parted lips, and a puff of air passes through the mouthpiece into the interior of the instrument. At once the lips, through their elasticity, return to their original position, until a new access of pressure forces them open again, sending a second stream of air into the mouthpiece.

One of the first acousticians to investigate what actually occurs within the trumpet mouthpiece was E. G. Richardson. He "recognized that a flat jet of air projected through a slit tends to break up into curls or vortices, but without any orderly sequence. If, however, the jet be directed against a more or less sharp edge the vortices are marshalled into regular cyclic order, and the jet+edge system becomes a form of tone generator. ${ }^{16}$ Richardson suggested that the edge within a mouthpiece might have the same effect, and subsequently contribute to the tone quality.

[^1]Once the basic sound is produced, every facet of the mouthpiece can be adapted to have a special effect on the sound. Mouthpieces of various sizes, shapes, and materials have been manufactured and employed. Although a special mouthpiece is no substitute for a particular skill, certain subtle alterations will affect the playing technique. Harry Glantz, former first trumpet player of the New York Philharmonic, lists five factors which are dependent upon a good mouthpiece: (1) a sharp attack; (2) ease of blowing; (3) a clear tone; (4) resonance and carrying quality; and (5) true intonation and facility in both extremes of the tonal range. ${ }^{7}$

Factors to be considered in the selection of a mouthpiece are physical make-up, teeth, type of instrument, lip construction, and type of playing to be done.

The trumpet mouthpiece has four essential parts:
the rim; (2) the cup; (3) the throat; and (4) the backbore. Figure 1 shows a cross section of a modern trumpet mouthpiece.

It will be seen what hopeless confusion has existed in this field and how difficult it is for us today to get at the truth. But one thing is certain: the mouthpiece is the only part of the instrument which varies so individually according to the different natures and tastes of the players, that we must be careful not to want to set up any universal, standardized form. 8

[^2]

Fig. 1--Cross section of a trumpet mouthpiece ${ }^{9}$

The Rim
The rim of the trumpet mouthpiece is of the utmost importance because it comes in contact with the player's lips. Three factors of the rim to be considered are the width, the
${ }^{9}$ Lester Remsen, "A Study of the Natural Trumpet and its Modern Counterpart, "unpublished doctoral dissertation, University of Southern California, Los Angeles, California, 1960, p. 45 .
curvature, and the bite as shown in Figure 2. Each of these parts can affect both the playing characteristics and the tone quality, but "the most important factor is the way the mouthpiece feels on the 1ips. 10

Fig. 2--Diagram of a rim ${ }^{11}$

The rim width determines how much of the lip surface will support the mouthpiece. The contour of the rim is usually convex, but can be modified to suit the individual player. A mouthpiece reputed to offer comfort to the lips is the "cushion rim" model which "is nothing more than a very wide rim which covers a greater area of the lips thus allowing the pressure to be spread out and not concentrated
10^{10} John J. Haynie, "On Selecting the Proper Mouthpiece," Southwestern Brass Journal, I (Fall, 1957), p. 23.

11 Jody Hall, The Proper Selection of Cup Mouthpieces (E1khart, Indiana, 1963), p. 16 .
in a very narrow area." 12 This type of rim "will reduce flexibility and may even disturb tone quality because of the abnormal position which it enforces upon the embouchure." 13 Although a narrow rim will afford more control and more consistency of attack, it will abuse the lip by cutting into it.

The curvature of the rim is usually slightly rounded to offer comfort to the lips. The surface of the rim which is placed against the lips must be kept clean and free of abrasions and scratches in order to protect the lips.

The inner edge or "bite" of the rim is the most vital area, for this is the contact point of the vibrating lips and the mouthpiece. The bite is the angle formed at the meeting of the rim and the cup. "Just as one must press the finger down tightly on a stringed instrument in order to produce a clear tone, so must one also have a definite contact point for the embouchure at the inner edge of the rim."14 When the bite is sharp, the lips are provided with a definite stopping point in their vibrating, and the resulting tone and attack are more clear. However, the flexibility will be hindered because of the difficulty the lips will have in moving across the bite. If the bite is slightly rounded, the flexibility will be enhanced, but the attacks may not be precise.

$$
\begin{aligned}
& 12_{\text {Haynie, op. cit. }} \text { p. 23. } 13_{\text {Winter, op. cit. }} \text { p. } 12 . \\
& 14_{\text {Hall, op. cit. }} \text { p. } 17 .
\end{aligned}
$$

"The three rim factors are of first importance to the player's lip comfort, flexibility, and endurance. But they are also factors in tone quality because the way the lip is gripped by the mouthpiece rim can affect especially the clearness of tone."15

The Cup

The cup or "bowl" begins immediately below the rim and terminates with a "shoulder" at the throat. As with the rim, the cup has three separate areas which affect both the player and the acoustical results: the diameter, the depth, and the shape.

The diameter of the cup determines how much of the player's lips are used to produce a sound. A player's primary consideration in selecting a wider diameter will be"the relative strength or weakness of the embouchure; a large mouthpiece tends to produce a bigger tone, but not all embouchures are strong enough to use such a mouthpiece." ${ }^{16}$ The quality of sound produced with a wide diameter will be "dark", possessing very few of the upper partials of the tone. ${ }^{17}$ Another characteristic of the wide diameter is the ease of producing low tones and the difficulty of producing the higher register.

[^3]A mouthpiece with a smaller diameter will produce a brighter, more compact sound. This sound may have a tendency to be shrill in quality and sharp in pitch. A player may experience difficulty in playing in the lower register, but will have less difficulty in playing in the high register. ${ }^{18}$
"It is an experimental fact that the depth of the cup affects the solidity with which a player can 'lock in' on a desired pitch, as well as affecting the tone color of the instrument. ${ }^{19}$ The cup depth coupled with the diameter provides the total cup volume of a mouthpiece. A deep cup with a wide diameter will produce an enormous volume of sound, but will not have a bright, penetrating quality. A shallow cup with a small diameter will offer a brilliance with no body or breadth to the sound. It is important for a player to be aware of both factors because"the diameter and depth of the cup combine to create an area volume that is directly related to the volume or size of the tone produced. ${ }^{20}$

In examining the depth factor without considering the diameter, Remsen states that the shallow cup facilitates the high register, and brings out the higher partials in the tone, adding a thinner, brighter quality. A shallow cup can also sharpen the pitch, especially in the upper register. ${ }^{21}$
${ }^{18}$ Haynie, op. cit., p. 24.
${ }^{19}$ Arthur Benade, Horns, Strings, and Harmony (Garden City, New York, 1960), P. I89.
${ }^{20}$ Tetz1aff, op. cit., p. 27. ${ }^{21} 1_{\text {Remsen, }}$ op. cit., p. 47.

One of the most underrated factors of the trumpet mouthpiece is the configuration of the cup. "Contour of cup is naturally affected by depth and width, but has its own peculiarities." 22 That property of contour is the "shoulder" or "edge." 23 This is the angle formed where the cup joins the throat, and the location of the point of impact of the air as discussed in dealing with the Richardson edge-tone theory. A "V" shaped cup with sides sloping to the throat would eliminate the shoulder and produce a mellow sound. 24 The addition of "a high shoulder with a sharp, abrupt edge dropping into the throat facilitates a brillian tone and attack. ${ }^{25}$

Figure 3 shows two examples of identical mouthpieces with different shoulders. Example A has a rounded edge whereas example B has a sharp edge.

${ }^{22}$ Ibid.

$23_{\text {Norman }}$ J. Hunt, Guide to Teaching Brass (Dubuque, lowa, 1968), p. 61.
$24_{\text {Remsen, }}$ op. cit., p. 48.
25 Tetzlaff, op. cit., p. 27.

Fig. 3--Cross section of shoulders in cup contours ${ }^{26}$

Whether the bottom of the cup has a sharp edge as in the trumpet mouthpiece, or has none as in that of the horn, is important. The effect is usually described thus: a sharpedged cup gives a 'hard', 'incisive', tone, while rounding the edge off, or removing it altogether, gives a 'softer', or 'smoother' tone. 27

The Throat
"The smallest passageway through which the vibrating column travels at the bottom of the cup is referred to as the 'throat'." 28 The throat or "bore" is usually cylindrical and connects the cup and the backbore. The size of the throat governs the amount of air which will pass into the instrument, which in turn will affect the ease of playing, range, volume of tone, and projection of sound. "The larger the throat,
${ }^{26} \mathrm{Hall}$, op. cit. , p. 15.
${ }^{27}$ Benade, op. cit., p. 189.
$28_{\text {Remsen, op. cit., p. } 48 . ~}^{\text {p. }}$
the greater demands on the physical development of the embouchure. ${ }^{29}$ A large throat will increase the volume of sound and cause the tone to be mellow. However, a large throat will also cause the attacks to be sluggish and might give the sound a "tubby" quality which lacks clarity. While a smaller throat might add brilliance to the sound, one which is too small would choke the sound making it thin, and would cause great discomfort to the player. ${ }^{30}$

One facet of the throat which has only recently been considered is the length. This factor is difficult to determine without destroying the mouthpiece. ${ }^{31}$ It has been ascertained that a long throat will emphasize the high partials in the tone. The long throat will facilitate the production of the high register, but can often make that register sharp in pitch. ${ }^{32}$

The Backbore
'The boring. . . serves as the critical 'stowage-corner' for the air poured from the player's lungs. ${ }^{33}$ In addition to being the shank of the mouthpiece, the backbore serves as the connector of the instrument and the total mouthpiece.
${ }^{29}$ Ha11, op. cit., p. 10.
${ }^{30}$ Haynie, op. cit., p. 24.
${ }^{31}$ Letter from R. Dale Olson, Acoustic Instruments, Fullerton, California, November 27, 1968.

32 Remsen, op. cit., p. 48.
$33_{\text {Menke, op. cit., p. } 189 .}$

The essential factor of the backbore is the "flare" or angle of taper from the throat to the main tube of the instrument.

Many authorities feel that the backbore is often overlooked because it is not readily observed. Haynie feels that "the conical shape of the backbore enriches the tone while a very straight or cylindrical backbore aids the production of the upper tones. "34 Winter claims "a radical cone in the backbore tends to facilitate playing, but may cause the instru* ment to become rough in forte passages, while a more cylindrical backbore offers greater resistance, resulting in a more solid tone which will not 'speak' quite so readily." 35 Schilke states:

If the backbore flares out rather rapidly, the tone will be full but slightly more difficult to control. If the backbore becomes straighter, with less flaring out, the tone becomes thinner but more easily controlled; at the same time the blowing resistance is increased. 36

Figure 4 shows a group of cornet and trumpet mouthpiece cross sections. It is interesting to note that all five mouthpieces illustrated are available on the commercial market.
${ }^{34}$ Haynie, op. cit., p. 24.
${ }^{35}$ Winter, op. cit. , p. 12.
${ }^{36}$ Remsen, op. cit. , p. 49 .

Fig. 4--Cross sections of various backbores ${ }^{37}$

The Complete Mouthpiece
The mouthpiece serves as a very important link between the player and his instrument, not only because it is the point of physical contact and must feel comfortable on the lips, but for the fact that its proportions and dimensions have a marked influence on the vibrating column of air before it enters the trumpet. 38

The volume of the cup, the size of the throat, the amount of flare in the backbore, and the type of rim will individually and collectively affect the production of tone. "That the above factors are aligned with each other is of the greatest importance. They must be compatible to (1) the tonal conception in the performer's ear; (2) his method of blowing; and the instrument he chooses to play on."39

$$
\begin{aligned}
& 37_{\text {Hall, op. cit. }} \text { p. } 10 . \quad 38_{\text {Remsen, op. cit. }} \text { p. } 43 . \\
& 39 \text { Tetzlaff, op. cit., p. } 27 .
\end{aligned}
$$

"The parts of the mouthpiece are interacting, and bear a relationship to each other in that any one part cannot be changed without necessitating a change in the other parts." 40 If a player selects a mouthpiece with a very large cup volume and an extremely small throat, he will become uncomfortable because the throat will not accept the amount of air that the cup will require.

Vincent F. Malek conducted an extensive survey of the mouthpieces of fifty-two of the leading players in all fields of music. His conclusions showed that no mouthpiece in the sample had any of the following extreme dimensions: (1) a throat smaller than . 140 inches (drill size 28) or larger than . 159 inches (drill size 21); (2) a cup diameter of less than . 61 inch or more than .67 inch; (3) a rim curvature of more than $15 / 64$ inch radius; (4) a rim thickness of greater than . 255 inch; and (5) a bite curvature of more than $6 / 64$ inch radius. ${ }^{41}$
"The trumpet has somehow managed to attract more alleged mouthpiece inventors than any of the other brasses; there are a great many freak mouthpieces on the market at the present time, and a steady flow of new ones. ${ }^{42}$ The pioneers of
${ }^{40}{ }_{\text {Hall, }}$ pp. cit., p. 8.
$41_{\text {Vincent }}$ F. Malek, "What is a Good Cornet or Trumpet Mouthpiece?" The Instrumentalist, VII (May, 1954), p. 23. $42_{\text {Winter }}$ op. cit., p. 36.
modern mouthpiece design were trumpet players who began duplicating their personal mouthpieces for their friends. Representatives of this group include Vincent Bach, Renold Schilke, and Irving Bush.

It is because of the search for "the perfect mouthpiece" that manufacturers are turning to the computers for assistance. ${ }^{43}$ William Cardwell, Jr., is currently involved in a study of mouthpiece design by computers. His first efforts offer revolutionary design of the rim, cup, and backbore. ${ }^{44}$ Most of Cardwell's testing has dealt with correcting the intonation problems of the trumpet and mouthpiece by changing only the latter. Studies of this type may completely revolutionize the trumpet mouthpiece as it is known today.
"A good mouthpiece on an inferior instrument is still to be preferred to a poor mouthpiece on a good instrument." 45
${ }^{43} 01$ son, op. cit.
${ }^{44}$ Letter from Willi Cardwell, Jr., Whittier, California, January 7, 1969.
${ }^{45}$ Marion L. Jacobs, "Uses and Abuses of Cup Mouthpieces," Etude, LXV (January, 1947), p. 19.

CHAPTER II

THE PHYSICAL ANALYSIS OF
 SELECTED MOUTHPIECES

For the purpose of this study, five examples each of three different sized trumpet mouthpieces were collected from the teachers and students at North Texas State University. These mouthpieces were the 1C, 7C, and 10 1/2C models manufactured by the Vincent Bach Corporation. The Bach system of identification uses "the low numbers [to] indicate a larger cup diameter. . While the high numbers represent smaller size cup diameters." 1 The letter " C " indicates that the depth of the cup is that of the "medium-shallow ' C ' trumpet cups." ${ }^{2}$ The 7C and the $101 / 2 \mathrm{C}$ mouthpieces were selected because of their reputation of being widely used models of the average and small inside cup diameters. ${ }^{3}$ The 1C was selected because it is the largest inside cup diameter manufactured by Bach. With the standardization of the "C" cup, the only intended variable was that of the cup width. When all fifteen mouthpieces were assembled, it was necessary to thoroughly clean all of them before any measurements were made. Some mouthpieces had not been cleaned for

[^4]some time, and consequently some sediment had formed in the throat and backbore which would have affected the actual measurements of the mouthpiece. Figure 5 shows the fifteen mouthpieces.

Fig. 5--Fifteen selected mouthpieces

A total of seven measurements was made on each of the fifteen mouthpieces. The purpose of these measurements was to establish the average dimensions for each of the three mouthpiece sizes. Variations in dimensions within the same mouthpiece classification can be attributed to wear through use, differences in the sharpness of the cutting tools when the mouthpiece was manufactured, and in some instances, misnumbering.

The first measurement taken was that of the throat diameter. A series of Briggs and Weaver drill blanks, series 902, was used. The measurement was made by placing the largest possible drill blank through the throat. Figure 6 shows the placement of a drill blank into the throat.

Fig. 6--Measuring the throat

The second measurement taken was that of the inside cup diameter. A Brown and Sharpe micrometer/caliper tool \#577 was used. One foot of the caliper was placed on a point just below the bite, where the cup meets the rim, while the other foot was extended until it touched the same point directly across the cup. The gauge on the tool was read with the aid of a magnifying glass. To insure accurate measurements, this
process was repeated several times. Figure 7 shows how the inside cup diameter was measured.

Fig. 7--Measuring the inside cup diameter

The depth of the cup was the next measurement to be taken. In order to measure the cup only to the top of the throat or to the shoulder of the inner cup, a series of nails was prepared so that they could be placed into the throat so that the head of the nail would form an even seal across the inner cup. The measuring bar of the Brown and Sharpe micrometer/caliper \#577 was extended to the nail in such a way so that the tool was anchored against the rim of the mouthpiece. The resulting angle between the tool and the top of the mouthpiece rim was 90°, insuring an accurate measurement. This
figure, as all others, was checked repeatedly. Figure 8 illustrates the measuring of the cup depth.

Fig. 8--Measuring the cup depth

The width of the outer cup was determined by using the Brown and Sharp micrometer/caliper \#577. The rim widths were determined by subtracting the cup width from the outer cup width and dividing by two. Figure 9 demonstrates the measuring of the outer cup width.

In measuring both the rim curvature and the bite curvature, the Starrett radius gauges \#S167A were used. For both dimensions the smallest possible gauge which had no gap in the center when placed against the curve was selected.

Fig. 9--Measuring the outer cup width

Figure 10 shows the measuring of the rim curvature whereas Figure 11 shows the measuring of the bite.

Fig. 10--Measuring the rim curvature

Fig. 11--Measuring the curvature of the bite

Table I presents all of the physical measurements for each of the fifteen mouthpieces. From left to right, the columns are: the individual mouthpiece, with the five 1 C mouthpieces listed first followed by the 7 C and $101 / 2 \mathrm{C}$; the throat; the cup width; the cup depth; the outer cup width; the rim width; the rim curvature; and the bite curvature. Table II presents the average measurements as compiled for each of the three mouthpiece sizes.

TABLE I
PHYSICAL ANALYSIS OF SELECTED MOUTHPIECES

MP	Throat	C Width	C Depth	0 Width	Rim W	Rim C	Bite
1	27	.667	.325	1.079	.206	$12 / 64$	$2 / 64$
2	27	.667	.329	1.083	.208	$12 / 64$	$2 / 64$
3	28	.670	.328	1.079	.204	$10 / 64$	$3 / 64$
4	28	.663	.315	1.075	.206	$12 / 64$	$2 / 64$
5	27	.670	.314	1.085	.207	$10 / 64$	$3 / 64$
6	28	.655	.330	1.061	.203	$10 / 64$	$3 / 64$
7	27	.648	.335	1.056	.204	$10 / 64$	$3 / 64$
8	26	.625	.316	1.083	.229	$12 / 64$	$3 / 64$
9	28	.628	.322	1.082	.227	$11 / 64$	$3 / 64$
10	28	.659	.329	1.061	.201	$12 / 64$	$3 / 64$
11		28	.645	.323	1.059	.207	$12 / 64$
12	27	.645	.328	1.056	.205	$12 / 64$	$4 / 64$
13	28	.650	.316	1.061	.205	$12 / 64$	$3 / 64$
14	28	.647	.324	1.055	.204	$13 / 64$	$4 / 64$
15	28	.620	.319	1.069	.224	$13 / 64$	$4 / 64$

$1_{\text {This }}$ number refers to the number of the drill blank, with 27 representing . 144 inch, and 28 representing . 140 inch.

TABLE II
PHYSICAL ANALYSIS AVERAGES FOR THREE MOUTHPIECE SIZES

MP	Throat	Width	C				
Depth	Width	Rim W	Rim C	Bite			
1C	27.4	.667	.322	1.080	.206	$11 / 64$	$2 / 64$
7C	27.4	.643	.326	1.068	.212	$11 / 64$	$3 / 64$
$101 / 2 C$	27.8	.641	.322	1.050	.209	$12 / 64$	3.64

CHAPTER III

THE TONAL ANALYSIS OF SELECTED MOUTHPIECES

The next procedure involves the analysis of individual tones produced with the selected fifteen mouthpieces. These mouthpieces were tested individually, and the results grouped according to the $1 \mathrm{C}, 7 \mathrm{C}$, and $10 \mathrm{1} / 2 \mathrm{C}$ classifications for further study.

The tonal analysis was conducted so that the only variable factors were the mouthpieces. Since the study dealt only with the mouthpieces, the same $\mathrm{B}^{\text {b }}$ trumpet was used throughout the test--a Conn 60B. This instrument was selected because none of the players involved in the study played on this particular brand. All testing was conducted in the same room, with all the apparatus in the same position.

Five trumpet players from North Texas State University were selected for participation in this study. Each of the five players had received extensive training and exhibited a high level of musicianship and playing ability. They were each tested a total of three times in an attempt to get an accurate representation of each mouthpiece.

Although intonation was not a consideration of this study, a Stroboconn was used to maintain a constant pitch level throughout the testing. The player was then positioned
so that he could view the sound level meter and maintain the same intensity for each tone. The microphone was attached to the sound wave analyzer which measured the presence and strength of each partial in the tone. These results were then recorded by the graphic level recorder on a chart roll. The description of the presence, frequency, and strength of each partial on the chart roll constitutes the spectrum of a tone.

A list of the equipment used in this phase of the testing is as follows:

Stroboconn
Electrovoice Microphone--mode1 655C
General Radio Sound Level Meter--type 1551C
General Radio Wave Analyzer--type 1900D
General Radio Graphic Level Recorder--type 1521B
General Radio Stylus 80db Potentiometer--type $1521 \mathrm{p}^{3}$
General Radio Chart Roll--type 1521-9464
All the equipment was operated by a research assistant of the Chairman of Music Research Department at North Texas State University. The following sketch is a diagram of the equipment used in the testing.

Sound wave Analyzer
Fig. 12--Diagram of equipment

Figure 13 shows the sound level meter, sound wave analyzer, and the graphic level recorder.

Fig. 13--Photograph of equipment

The harmonic series as produced on a trumpet is as
follows:

Fig. 14--Harmonic series of trumpet

The playing portion of this study consisted of sustaining each of the six tones for the analyzer to accurately scan $3000 \mathrm{~Hz},{ }^{1}$ about a total of 20 seconds. The six tones were:

Fig. 15--Playing portion of test

A11 six tones were played on one mouthpiece before moving onto the succeeding mouthpiece. All of the 1C mouthpieces were tested first, with the 7C tested second. The player was permitted to play for one minute on the first of each different mouthpiece size. When each tone was sustained for approximately 3000 Hz , the sound wave analyzer and graphic recorder were able to record seven partials for the tone founded upon the fundamental frequency of the fourth harmonic (c5), ten each for the second harmonic (c4) and the third harmonic (g4), six partials for the fifth harmonic (e5), five partials for the sixth harmonic (g5), and three partials for the eighth harmonic (c6). ${ }^{2}$ The total number of partials recorded was forty-one.
$1_{\text {The term Hertz }}(\mathrm{Hz}$) is a new designation which refers to cycles per second. One Hz is equal to one CPS.
${ }^{2}$ Although the equipment used in this study produced a very accurate analysis of the spectrum of a musical tone, it operated very slowly. Therefore, it was necessary for the player to sustain each tone for 3000 Hz in order to measure the desired partials. In recent years, a real-time analyzer has been developed which will analyze a tone many times faster than the current equipment, and still maintain a high degree of accuracy.

When all the testing was completed, the graphs were evaluated to determine the strength of each partial for each tone on each mouthpiece. This was achieved by measuring the decibe 1^{3} ratings for each partial. Appendix A contains all the ratings for each partial of the six tones as produced on each of the fifteen mouthpieces by the five subjects for each of their three tests.

It was then necessary to determine the value of each mouthpiece as played by all five subjects. This was accomplished by adding the players' test scores for each partial for a given mouthpiece. This total was then divided by the number of scores, with the quotient carried to the third decimal place. This information is presented as Appendix B.

In order to deal with all five mouthpieces of identical size, the average ratings for each size had to be determined. This was accomplished by adding the scores for each partial for all five mouthpieces of the same size, and dividing by five to the third decimal place. The succeeding table (see page 29) presents the average ratings for each partial of the six tones for the tested Bach $1 \mathrm{C}, 7 \mathrm{C}$, and 10 1/2C mouthpieces.

[^5]TABLE III
RELATIVE DECIBEL STRENGTH OF PARTIALS PRODUCED ON SELECTED MOUTHPIECES

MP	F	2	3	4	5	6	7	8	9	10
1C	60.972	62.672	61.879	57.605	53.926	44.245	35.099			
7 C	57.893	62.212	63.186	56.492	50.599	41.891	31.030			
10 1/2C	58.453	61.512	61.933	56.853	51.706	$\begin{gathered} 41.136 \\ \mathrm{C} 5 \end{gathered}$	33.322			
1 C	39.786	51.796	54.186	54.519	53.779	53.493	50.228	47.024	46.971	42.314
7 C	39.653	49.839	53.039	51.906	52.213	53.653	48.933	45.214	44.506	40.590
10 1/2C	38.879	47.813	52.826	52.266	53.226	$\underset{\mathrm{C} 4}{52.460}$	48.376	45.826	44.639	39.909
1 C	56.373	59.066	60.508	58.095	54.666	51.396	44.516	38.412	30.778	26.629
7 C	54.639	57.106	57.946	56.906	51.439	49.908	40.843	34.842	26.751	20.684
10 1/2C	55.199	56.346	58.506	56.319	51.866	50.506	43.252	35.080	28.965	22.610
	.					$\mathrm{G4}$				

TABLE III--Continued

PRESENTATION OF DATA

The following pages contain samples of the chart roll used in the testing. Each table represents one tone with the location and average strength of each partial as produced by the three different size mouthpieces. Since pitch was not one of the criteria, the partials are shown in their relative location. These are marked along the bottom of the chart, while the decibel ratings are along the left margin. The average rating for each of the three mouthpiece sizes is shown at each partial, and each decibel rating is designated by a colored mark. This mark corresponds with the actual numerical rating which appears above the mark. The red mark represents the 1 C , whereas the green is the 7 C , and the blue is the $101 / 2 \mathrm{C}$.

Accompanying each chart will be a brief discussion which will recognize any trends which are present. These trends will often be any repeated patterns or a particular point where all three mouthpieces will be close to one another.

Fig. 16--Spectrum of C5 produced by selected mouthpieces

In all partials except the third, the 1 C registers as the strongest of the three mouthpieces. At the fundamental, the three mouthpieces are 3 db apart. The mouthpieces are within 1.2 db at the fourth partial, only to drift farther apart in the succeeding partials. At the seventh partial, the three mouthpieces are 4 db apart.

The 1 C mouthpiece reaches its strongest point at the second partial with a 62.672 db rating, and gradually tapers to 35.099 db at the seventh partial which is its lowest point.

The 7C mouthpiece records the third partial as its strongest at 63.186 db . Its lowest point is the seventh partial at 31.030 . This mouthpiece is the strongest of the three at the third partial.

The $101 / 2 \mathrm{C}$ mouthpiece reaches its peak at the third partial with a level of 61.933 db . Its lowest point is the seventh partial at 33.322 .

The 1 C mouthpiece produces the strongest activity in all the ten partials with the exception of the sixth partial, where the 7 C registers .16 db stronger. All three mouthpieces are within 1 db at the fundamental and within 1.2 db at the sixth
partial. The widest interval occurs at the second partial with a spread of almost 4 db .

The strongest partial of the 1 C is the fourth with a reading of 54.519 db . The weakest partial is the fundamental at 39.786 .

In the sixth partial, the 7C reaches 53.653 db for its strongest rating in this tone. Its lowest rating is 39.653 db at the fundamental.

Fig. 17--Spectrum of $C 4$ produced by selected mouthpieces.
db

ㅇ 오
0 앙
\circ 웅

- 우

응
Hz :

The $10 \mathrm{1} / 2 \mathrm{C}$ mouthpiece reaches its strongest point at the fifth partial at 53.226 db . Its lowest reading occurs at the fundamental with 38.879 db .

In this particular tone, ten partials are measured, and all ten show that the IC mouthpiece produces the strongest activity. All three mouthpieces produce their highest levels at the third partial and begin a decline to their lowest levels at the tenth partial. The three mouthpieces come within 1.5 db of each other at the sixth partial.

The 1 C mouthpiece reaches its strongest point at the third partial with 60.508 db , while its lowest reading at the tenth partial is 26.629 db . It is interesting to note that beginning with the seventh partial, the 1 C begins to show an increasingly superior strength over the other two mouthpieces.

The 7C mouthpiece records 57.946 db at its highest point, and 20.684 db at its lowest point. From the fifth partial to the tenth, the 7 C registers as the weakest of the three mouthpieces.

The $101 / 2 \mathrm{C}$ mouthpiece is strongest at the third partial with a reading of 58.506 db . The weakest reading is 22.610 db at the tenth partial. In three of the last four partials, the $101 / 2 \mathrm{C}$ registers at a point 2 db above the 7 C , yet 1.4 db below the stronger 1C. This appears to be a trend for the $101 / 2 \mathrm{C}$ in the upper partials of this tone.

For the first two partials, the $101 / 2 \mathrm{C}$ records the strongest rating. At the third partial, the larger 1 C begins a trend which continues for the remainder of the partials in question. All three mouthpieces are within 1 db of each other at the fundamental, and spread to almost 3 db at the sixth partial.

The 1 C reaches its strongest point at the fundamental with a rating of 64.879 db . Its weakest point is the sixth partial at 32.665 db . The trend between the second and third partials develops when the reading on the 1 C drops only 4 db , while the 7 C and $101 / 2 \mathrm{C}$ mouthpieces $\mathrm{fal1} 5 \mathrm{db}$ and 6 db respectively.

With a reading of 64.666 db at the fundamental, the 7 C records its strongest partial. Its weakest point comes at the sixth partial with 30.533 db .

The $101 / 2 \mathrm{C}$ mouthpiece has its strongest rating at the fundamental with 65.359 db , while its lowest rating is at the sixth partial with 29.760 db .

In the sixth harmonic, five partials are measured, and the 1 C is the strongest in all but the second partial. Both the 1 C and the $101 / 2 \mathrm{C}$ mouthpieces record their strongest

readings at the fundamental and begin a steady decline to their lowest readings at the fifth partial. The 7 C reaches its peak at the second partial and is the strongest of the three mouthpieces for that partial, and then makes the same decline as the other mouthpieces. The three mouthpieces are within .5 db of each other at the third partial only to arrive at the fifth partial with a spread of almost 4 db .

The 1 C mouthpiece has a rating of 67.572 db at the fundamental and 38.531 db at the fifth partial.

The 7 C mouthpiece has its strongest reading of 66.306 db at the second partial and its weakest reading of 34.774 db at the fifth partial.

The rating of the $101 / 2 \mathrm{C}$ mouthpiece at the fundamental is 67.249 db , while the rating at the fifth partial registers 34.774 db .

In examining the $C 6$, three partials are registered. The 1 C is the strongest of the three mouthpieces for the fundamental and the third partial, and the weakest of the three for the second partial. At the second partial, all three mouthpieces are within .3 db , whereas the range for the fundamental is 2.4 db , and 2.1 db for the third partial.

The 1 C reaches its strongest point at the fundamental with a 72.178 db . rating. At the third partial, the level is 54.704 db . Between the fundamental and the second partial, the 1C declines over 9 db whereas the 7 C drops under 8 db and the $101 / 2 \mathrm{C}$ falls only 6.6 db . However, between the second and third partials, the 1 C falls 8.4 db , while the 7 C decines 10.1 db and the $101 / 2 \mathrm{C}$ plunges 10.5 db .

Fig. 21--Spectrum of C6 produced by selected mouthpieces.

ANALYSIS OF DATA AND CONCLUSION

It has been stated that this study was concerned only with the tone qualities produced with the selected Bach 1 C , 7 C , and $101 / 2 \mathrm{C}$ mouthpieces. While the pitch of a tone is determined by its fundamental, its upper partials control the tone quality. It is the presence and strength of these partials which first give the trumpet its characteristic sound, and secondly, allow for discrete variations in that tone quality.

In explaining the actual effect of the upper partials on the tone quality, Helmholtz states that "the influence of the upper partial tones is by no means unfelt. They give a compound tone a brighter and higher effect."1 Backus claims that "tones with many high-frequency harmonics tend to sound brighter. ${ }^{2}$ In discussing an experiment with strings of varying tensions, Benade states that one tone differed from another "chiefly in having larger amounts of the higher frequency components; it produces a tone color that is a little

[^6]'brighter' and 'more penetrating,' as the musicians say." ${ }^{3}$ Finally, Culver declares that "a shallow cup-shaped mouthpiece facilitates the formation of the higher partials, and hence a 'bright' tone."4

In this study, a total of forty-one partials was recorded and measured. In all but six of these, the IC mouthpiece produced the highest degree of intensity. This can be cited as a definite behavorial characteristic of tones produced with this mouthpiece. Table IV presents a comparative relationship of the three mouthpiece sizes, with the most intense being designated as first, and the least intense, third.

TABLE IV
COMPARATIVE RELATIONSHIP OF SELECTED MOUTHPIECES FOR FORTY-ONE PARTIALS

Mouthpiece	First	Second	Third
1 C	35 Partials	4 Partials	2 Partials
7 C	4 Partials	16 Partials	21 Partials
$101 / 2 \mathrm{C}$	2 Partials	21 Partials	18 Partials

The 7C and the 10 1/2C mouthpieces ranked very close to each other. Although the 7C illustrated the most intensity
${ }^{3}$ Arthur H. Benade, Horns, Strings, and Harmony (Garden City, New York, 1960), p. 119 .
${ }^{4}$ Charles A. Culver, Musical Acoustics (New York, 1956), p. 215 .
on two more partials than did the $101 / 2 \mathrm{C}$, it was the weakest mouthpiece on three more partials than the $101 / 2 \mathrm{C}$. On the basis of these relationships, no decisive pattern was evident.

There were only six out of forty-one partials in which the 1 C did not rank first in intensity. Of these, four were strongest in the 7 C , and the remaining two in the $10 \mathrm{l} / 2 \mathrm{C}$. The six exceptions are presented in Table V.

TABLE V
EXCEPTIONS TO THE ESTABLISHED BEHAVIORAL PATTERN

It is interesting to note that three of these six exceptions occur in the $1396-1398 \mathrm{~Hz}$ range. The only other partial to fall within this range is the fourth partial of G4 (1396 Hz), and it recorded the 1 C as the strongest.

The tonal analysis has produced a trend which shows the 1C mouthpiece providing more intensity in the partials than the 7 C and the $101 / 2 \mathrm{C}$ mouthpieces. This analysis also shows that the results produced by the 7 C and $101 / 2 \mathrm{C}$ mouthpieces are very similar. In this study a total of forty-one partials of six different fundamental pitches was recorded and measured.

It is now necessary to re-examine the physical properties of the $1 \mathrm{C}, 7 \mathrm{C}$, and $101 / 2 \mathrm{C}$ mouthpieces as presented in Chapter II.

TABLE VI

PHYSICAL ANALYSIS OF SELECTED MOUTHPIECES

MP	Throat	Cup	$\begin{aligned} & \text { Cup } \\ & \text { Depth } \end{aligned}$	Outer Width	$\begin{gathered} \text { Rim } \\ \text { Width } \end{gathered}$	Rim Cup	Bite
1C	27.4	. 667	. 322	1.080	. 206	11/64	2/64
7 C	27.4	. 643	. 326	1.068	.212	11/64	3/64
$10 \mathrm{l} / 2 \mathrm{C}$	27.8	. 641	.322	1.050	. 209	12/64	3/64

The physical measurements of the Bach 1C, 7C, and $101 / 2 \mathrm{C}$ mouthpieces are very similar with the exception of the cup width. The 1C mouthpiece (widest inside cup diameter) produces the strongest partials in thirty-five out of forty-one instances, while the partials produced by the 7 C and $101 / 2 \mathrm{C}$ mouthpieces are very similar in strength. In comparing these factors to their physical properties, a relationship is found to exist in direct proportion. The wider inside cup diameter enables the

1C to produce significantly stronger partials. The similarity of the inside cup diameters of the 7 C and $101 / 2 \mathrm{C}$ mouthpieces (difference of . 002 inch) can be cited as the reason for the lack of distinction in the partials produced with these mouthpieces.

APPENDIX A

EVALUATION OF INDIVIDUAL PLAYER TESTS FOR EACH OF THE MOUTHPIECES

TABLE VII
MOUTHPIECE NO. 1

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	29	28	25	19	8	5					
	34	32	30	28	18	13					
	31	35	28	23	15	10					
2	30	36	31	34	26	\cdots					
	34	31	34	32	31	12					
	32	39	36	33	26	21					
3	32	34	33	31	21	16					
	37	36	35	28	20	16					
	29	33	28	26	18	11					
4	34	32	34	-	-	- ${ }^{\text {P }}$					
	32	34	36	32	26	25					
	31	32	27	25	19	12					
5	40	38	36	35	32	32					
	33	34	31	26	20	18					
	35	32	29	33	21	24					
1	34	33	26	17	13						
	26	24	31	16	15						
	28	29	21	11	6						
2	33	36	30	29	-						
	37	35	38	30	26						
	36	38	32	29	22						
3	35	36	30	20	17						
	33	36	32	21	21						
	32	35	26	22	13						
4	35	35	\cdots	-	-						
	39	35	35	29	24						
	30	29	31	25	19						
5	37	35	35	-	34						
	35	32	26	23	25						
	36	38	33	29	23						
1	39	29	21								$\frac{1}{2}$
	38	30	24								
	33	34	29								
2	38	35	32								
	39	35	35								
	40	38	32								
3	33	33	26								
	35	29	28								
	33	29	23								
4	35	35	31								
	38	34	37								
	33	30	29								
5	37	35	35								
	37	33	30								
	40	30	28								

TABLE VIII
MOUTHPIECE NO. 2

TABLE IX
MOUTHPIECE NO. 3

TABLE X
MOUTHPIECE NO. 4

P1ayer	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	35	33	32	26	22	18	11				$4{ }^{4}$
	31	33	29	25	18	16	7				
	31	34	25	27	-	-	-				
2	31	34	35	33	31	29	22				
	32	35	37	35	34	27	27				
	29	27	23	24	25	21	17				
3	32	41	34	29	28	21	16				170
	34	35	29	36	28	27	19				
	30	32	24	28	21	21	14				
4	24	34	34	\cdots	-	-	-				
	29	26	27	21	25	24	17				
	21	28	30	27	25	20	17				
5	36	35	35	39	35	33	32				
	41	33	25	28	26	21	11				
	25	26.	32	31	29	27	21				
1	24	27	29	29	28	20	22	21	22	17	
	24	24	25	29	27	27	25	24	21	20	
	20	24	24	27	23	18	20	20	20	14	
2	23	29	25	28	29	28	32	29	28	24	
	15	25	24	27	24	23	17	21	21	23	
	26	24	41	31	34	34	33	30	36	31	
3	16	29	25	29	30	32	29	25	26	23	
	19	29	27	30	28	29	23	24	22	21	
	15	26	25	24	25	23	22	15	19	20	
4	24	22	25	23	28	30	22	-*	-	\bullet	
	16	24	28	25	26	21	19	22	18	17	
	19	19	24	24	26	23	25	22	21	20	
5	30	35	36	35	37	35	35	35	34	32	
	16	27	26	27	25	19	18	21	21	19	
	19	22	29	21	29	29	26	25	26	25	
1	34	27	33	29	27	21	22	15	11	11	$\frac{1}{5-0}$
	27	27	28	28	24	21	13	-.	-	-•	
	31	30	26	28	24	19	-	16	11	13	
2	31	33	31	29	32	29	25	20	16	-•	
	28	35	37	35	34	33	30	25	20	20	
	23	25	26	22	23	23	20	22	15	13	
3	30	32	33	30	25	24	16	15	10	9	
	33	29	35	34	31	31	29	22	20	13	
	23	27	32	25	16	25	20	11	10	-	
4	31	27	31	31	25	*	-	*	\cdot	*	
	22	29	29	26	26	22	23	18	10	11	
	22	27	28	28	23	21	22	17	12	9	
5	35	38	35	36	35	36	33	30	30	18	
	23	29	29	24	29	24	24	25	22	24	
	27	28	30	30	26	28	25	24	19	14	

TABLE XI
MOUTHPIECE NO. 5

TABLE XII
MOUTHPIECE NO. 6

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	29	32	34	24	17	15	10				
	31	22	34	27	23	11	7				
	28	26	35	27	19	14	8				
2	33	30	36	33	29	27	20				
	27	41	35	32	33	22	14				
	30	29	28	26	26	21	13				
3	34	35	33	31	15	20	12				
	35	37	35	29	31	26	20				
	29	30	26	26	19	21	14				
4	24	31	32	*	*	-	-				
	29	28	24	18	22	21	13				
	24	27	29	-	24	20	11				
5	29	33	35	30	29	28	23				
	29	26	27	27	28	22	15				
	20	31	37	27	26	22	13				
1	25	27	29	23	22	28	26	19	18	16	+ +
	23	27	25	27	24	28	23	20	18	15	
	14	26	21	22	29	27	21	14	16	16	
2	22	23	24	31	27	30	31	28	24	23	
	23	22	33	29	28	32	29	29	31	27	
	17	26	21	24	24	26	22	23	20	21	
3	21	29	30	29	23	25	21	24	25	20	
	21	29	26	30	31	32	24	24	25	23	
	16	25	25	25	26	25	21	13	19	19	
4	22	20	29	27	30	28	26	-	-	\cdots	
	16	24	26	26	26	24	13	22	22	21	
	19	20	25	20	25	24	26	23	21	17	
5	17	24	28	28	23	30	25	24	25	23	
	17	25	26	25	24	23	19	22	22	22	
	20	19	29	26	25	28	26	24	23	21	
1	34	28	29	31	28	25	15	11	11	8	
	29	27	31	29	28	25	14	13	-•	-	
	33	29	27	25	26	22	16	10	9	7	
2	31	28	29	30	27	28	22	20	14	13	
	20	32	32	35	31	29	25	22	16	14	
	20	28	26	24	25	22	20	20	13	9	
3	29	31	28	28	26	26	16	11	8	6	
	29	30	35	33	30	25	20	21	9	7	
	21	26	27	21	23	18	13	14	4	5	
4	33	29	25	30	24	\bullet	-	*	-	-	
	22	28	28	26	19	23	22	18	12	7	
	21	27	28	24	23	23	18	19	13	5	
5	28	29	28	34	30	29	26	23	20	16	
	25	28	27	23	27	24	21	20	13	14	
	28	30	28	34	24	25	22	19	15	12	

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	31	16	22	29	24	20					$9=0$
	33	33	25	22	-	-					
	24	36	30	27	16	. .					
2	36	34	32	30	27	-•					
	41	34	32	35	22	19					
	31	31	24	23	18	17					
3	27	39	31	27	19	-					
	41	33	34	29	23	20					
	31	37	30	24	20	13					
4	29	29	31	\cdots	\cdots	-					
	27	28	21	30	21	18					
	29	32	27	27	20	13					
5	34	34	32	29	22	18					
	30	33	31	25	23	-					
	34	31	23	27	21	15					
1	35	34	27	22	13						-1-0
	24	34	26	19	10						
	27	36	27	22	13						
2	41	35	34	28	23						
	36	35	35	31	23						
	27	34	32	23	19						
3	35	35	32	20	6						
	38	40	30	18	19						
	31	34	31	24	-.						
4	33	35	-	-	-						
	34	35	33	26	21						
	31	29	26	23	21						
5	34	34	31	24	20						
	33	29	27	23	17						
	32	34	31	24	19						
1											
	38	25	24								0)
	40	32	22								
	37	31	27								
2	35	34	32								
	35	32	29								
	36	31	26								
3	35	35	25								
	39	26	28								
	32	36	26								
4	35	27	\because								
	32	31	27								
	29	31	27								
5	39	33	29								
	34	34	29								
	35	28	27								

TABLE XIII
MOUTHPIECE NO. 7

TABLE XIV
MOUTHPIECE NO. 8

TABLE XV
MOUTHPIECE NO. 9

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	24	25	33	29	24	11	8				
	33	36	29	26	22	17	12				
	29	34	33	32	29	22	17				
2	33	34	28	22	25	20	-				
	28	34	39	30	25	21	17				
	29	30	28	29	23	20	20				
3	32	27	34	26	23	14	10				
	34	35	35	35	28	22	23				
	28	25	26	23	21	20	9				
4	21	33	32	31	\bullet	-•	-•				
	27	29	24	26	24	23	17				
	21	25	28	24	20	19	12				
5	29	33	35	32	29	24	21				
	40	25	32	29	29	25	19				
	27	32	33	27	27	22	16				
1	24	24	20	21	26	28	27	19	21		
	24	29	28	29	28	31	21	20	20	18	
	21	28	28	29	27	27	27	24	20	19	
2	23	24	30	29	28	27	28	26	25	19	
	22	26	34	33	26	32	29	29	28	31	
	9	26	23	26	25	26	24	22	24	23	
3	27	21	25	29	30	22	26	24	15	16	
	21	27	26	26	29	28	20	23	23	18	
	18	24	23	20	24	24	21	13	16	17	
4	23	20	23	29	30	29	25	26	26	20	
	16	24	25	24	26	24	24	21	21	19	
	19	18	25	17	28	25	24	20	22	17	
5	19	25	29	29	29	32	28	28	27	25	
	18	27	28	23	24	28	23	25	23	21	
	20	26	28	29	23	28	25	20	22	20	
1	36	25	34	28	27	28	21	14	12	11	
	31	24	34	30	29	26	20	15	12	10	
	31	30	29	23	23	22	16	14	9	7	
2	29	34	32	29	21	32	25	21	11	-•	
	24	34	29	32	23	31	24	20	15	13	
	22	27	28	25	29	25	21	21	16	13	
3	27	26	32	28	25	24	24	20	14	7	
	31	32	27	32	30	27	23	19	18	11	
	20	25	28	21	19	19	17	10	$\bullet \cdot$	-*	
4	31	25	28	33	25	27	23	17	13	-	
	22	27	29	21	26	24	21	20	14	8	
	21	26	27	25	23	22	20	16	23	. 6	
5	28	32	26	34	29	27	26	24	19	16	
	25	35	26	27	26	28	23	20	18	13	
	27	30	27	31	19	27	24	22	15	14	

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	37	27	29	24	18	16					
	*	32	32	23	13	8					
	33	30	29	24	17	-					
2	31	35	32	28	27	23					
	31	31	29	36	25	18					
	30	31	29	30	22	20					
3	27	30	35	31	26	16					
	37	32	34	25	21	14					
	30	30	27	24	22	15					
4	32	33	32	-	-	\cdots					
	27	28	33	21	21	17					
	31	32	25	24	19	13					
5	34	33	27	27	20	17					
	33	33	32	25	20	.					
	35	27	28	27	20	-•					
1	39	35	32	24	19						10
	28	33	27	20	14						
	34	35	30	20	14						
2	41	35	34	23	\cdots						
	41	35	34	24	22						
	22	36	31	23	17						
3	35	30	31	25	7						
	41	37	32	23	18						
	33	34	31	21	13						
4	38	32	31	*	-						
	33	28	29	24	20						
	31	29	27	25	16						
. 5	34	33	32	25	23						
	37	31	28	27	21						
	33	32	32	26	20						
1	34	31	28								12
	39	33	22								
	37	32	19								
2	37	35	30								
	40	34	33								
	37	28	23								
3	36	34	28								
	37	35	27								
	35	33	25								
4	35	28	27								
	32	27	27								
	31	30	23								
5	39	34	30								
	32	39	20								
	35	31	30								

TABLE XVI
MOUTHPIECE NO. 10

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	40	33	28	25	20	13					$\xrightarrow{2}$
	33	32	35	23	11	7					
	31	33	23	22	14	10					
2	32	34	35	28	27.	16					
	34	34	37	30	24	19					
	29	29	25	24	20	6					
3	33	28	29	23	20	13					
	41	36	38	25	27	21					
	28	32	28	25	15	13					
4	29	35	28	31	-	-					
	29	25	28	25	24	21					
	31	32	23	23	19	12					
5	34	32	30	25	20	14					
	32	34	31	25	22	17					
	37	28	18	26	19	11					
1	38	35	26	20	16						- 0
	27	29	25	21	16						
	35	29	27	14	13						
2	16	24	34	28	20						
	40	36	34	25	21						
	28	32	28	22	16						
3	34	28	29	23	7						
	33	41	27	17	15						
	29	30	33	23	8						
4	35	35	31	25	\bullet						
	31	36	29	27	22						
	30	26	31	25	21						
5	34	34	29	28	-						
	31	29	31	25	19						
	34	34	32	25	-						
1	41	32	27								12
	39	29	24								
	38	30	20								
2	42	34	29								
	39	34	28								
	34	31	24								
3	35	35	28								
	37	33	21								
	33	31	23								
4	34	32	30								\%
	34	25	28								
	32	27	23								
5	41	34	30								
	32	34	29								
	35	26	29								

TABLE XVII

MOUTHPIECE NO. 11

TABLE XVIII
MOUTHP IECE NO. 12

Player	F	2	3	4	5	6	7	8	9	10	Note
1	41	36	28	27	22	16					
	34	38	29	23	10	9					
	27	34	23	22	12	\cdots					
2	36	34	27	28	\cdots	-					
	37	34	29	30	25	19					
	30	28	26	27	17	12					
3	36	38	37	31	24	-					
	41	37	33	22	19	15					
	38	37	37	16	15	7					
4	28	36	32	31	\cdots	-					
	27	33	27	29	30	19					
	31	32	28	21	14	16					
5	33	33	29	28	18	19					
	32	35	31	28	23	17					
	36	31	29	30	24	20					
1	35	35	28	24	17						
	30	28	31	22	11						
	31	32	24	12	10						
2	36	39	31	27	13						
	41	34	33	26	19						
	32	32	26	27	19						
3	39	34	33	21	-						
	34	38	32	23	23						
	30	29	31	22	12						
4	34	33	31	23	-						
	33	29	28	25	24						
	29	27	31	22	20						
5	33	37	31	25	21						
	38	31	24	25	18						
	34	35	31	27	23						
1	37	31	24								02
	41	29	24								
	33	28	21								
	\cdots	33	31								
2	35	37	27								
	29	29	23								
3	36	28	19								
	41	33	28								
	28	31	24								
4	32	33	29								
	31	33	28								
	28	29	24								
5	34	34	29								
	33	31	25								
	35	34	30								

TABLE XIX

MOUTHPIECE NO. 13

Player	F	2	3	4	5	6	7	8	9	10	Note
1	34	33	36	31	23	22	18				
	29	35	27	27	23	16	18				
	24	33	29	28	24	15	8				
2	36	31	-	34	30	28	23				
	28	38	34	32	33	26	22				
	25	26	32	25	26	15	14				
3	33	29	28	27	23	18	11				
	33	-	32	27	25	21	16				
	26	31	29	28	22	23	12				
4	28	33	-	31	-	-	-•				
	29	31	23	27	26	17	14				
	15	25	32	27	25	19	16				
5	29	33	34	31	28	24	20				
	40	31	23	28	29	24	18				
	31	32	41	30	27	27	21				
1	22	27	27	29	27	31	28	23	22	19	
	23	23	24	27	27	29	25	24	21	20	
	18	21	26	27	28	26	22	25	21	18	
2	23	22	22	24	29	32	31	27	26	18	
	21	22	38	33	28	30	29	28	25	22	
	14	20	19	21	25	26	22	18	20	18	
3	21	28	30	29	26	30	23	28	26	17	
	21	29	28	30	28	26	24	22	23	19	
	19	23	24	24	24	24	25	20	19	16	
4	23	23	25	26	29	28	22	28	28	23	
	17	25	26	28	26	24	23	23	25	24	
	20	16	26	24	26	24	26	22	22	17	
5	19	24	29	29	27	29	25	25	24	22	
	17	26	26	23	27	21	23	20	18	18	
	18	17	28	25	26	30	27	26	28	24	
1	28	25	29	31	26	27	19	16	12	11	$\frac{\square}{1-\theta}$
	31	15	31	26	25	14	19	13	12	8	
	31	31	33	27	18	17	16	12	12	8	
2	29	36	30	33	28	29	24	21	17	13	
	25	35	32	32	28	27	27	21	16	15	
	26	23	23	27	23	23	22	17	14	8	
3	40	33	30	28	25	25	23	19	14	12	
	36	31	31	28	25	27	20	13	10	7	
	22	25	28	25	23	20	18	15	-	10	
4	30	24	29	32	29	31	-*	-	-	-•	
	22	28	36	21	25	18	26	18	17	13	
	22	26	29	25	21	23	21	19	13	-•	
5	27	29	28	33	29	27	25	24	21	19	
	25	32	25	23	28	26	23	23	18	16	
	28	31	30	33	25	28	24	23	21	12	

Player	F	2	3	4	5	6	7	8	9	10	Note
1	40	34	25	39	20	10					
	37	30	31	24	14	11					
	33	32	26	21	17	.					
2	27	29	36	31	27.	\cdots					
	41	35	26	32	21	20					
	27	28	24	22	20	9					
3	35	32	33	30	21	12					
	40	32	28	28	21	18					
	30	27	27	26	16	8					
4	32	34	31	-*	-	-					
	27	28	28	27	21	19					
	31	30	27	24	16	17					
5	35	34	30	24	22	- ${ }^{\circ}$					
	33	34	27	27	22	16					
	34	33	31	29	23	-•					
1	36	33	29	18	15						10
	30	33	28	18	12						
	35	21	29	14	12						
2	40	32	36	31	-						
	35	37	32	25	24						
	29	33	27	21	15						
3	38	33 37	32	27	14						
	36	37	34	22	16						
	29	33	24	21	16						
4	25	30	30	26	-						
	33	30	30	26	23						
	32	25	29	24	16						
5	34	39	32	27	24						
	35	31	27	26	20						
	33	41	29	24	21						
1	41	31	22								$\frac{9}{2}$
	40	29	27								
	36	28	20								
2	36	35	31								
	41	34	28								
	37	29	21								
3	36	33	28								
	40	30	18								
	25	29	24								
4	34	29	26								
	31	33	30								
	32	27	24								
5	35	35	29								
	41	33	28								
	39	29	30								

TABLE XX
MOUTHPIECE NO. 14

P1ayer	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	35	23	33	28	24	17	8				
	30	32	35	26	22	15	11				
	30	34	26	24	17	7	\cdots				
2	30	34	33	30	31	28	24				
	30	39	25	33	28	26	18				
	28	25	29	23	25	22	18				
3	35	32	32	28	22	15	11				
	31	34	30	29	31	21	18				
	27	29	28	27	22	20	13				
4	27	34	31	24	27	-•	-				
	28	28	22	26	23	17	12				
	21	24	28	22	20	23	20				
5	28	34	34	29	27	24	23				
	31	29	31	29	28	17	18				
	24	33	36	30	29	25	18				
1	22	26	23	21	25	21	19	20	19	16	
	22	21	27	29	24	24	22	22	20	17	
	14	25	28	27	27	22	19	16	20	18	
2	23	23	29	24	28	27	34	25	26	22	
	22	24	34	30	27	32	31	27	26	25	
	15	25	10	24	26	19	21	22	17	14	
3	15	27	27	29	25	27	19	21	17	18	
	20	26	26	25	28	26	20	25	22	19	
	16	24	24	25	24	20	21	21	19	19	
4	23	20	24	30	30	29	25	27	28	26	
	15	25	27	26	35	-	20	21	19	20	
	20	20	25	17	27	26	24	22	22	19	
5	19	24	29	29	27	29	27	25	27	24	
	17	26	27	26	29	25	25	22	23	20	
	18	18	28	27	28	30	28	25	24	23	
1	27	25	34	21	22	20	-•	-•	-•	-•	
	32	30	28	27	26	27	23	15	12	10	
	29	27	31	20	22	32	22	17	12	7	
2	32	20	37	33	28	28	25	20	21	14	
	23	33	29	32	26	27	24	16	17	10	
	26	15	28	27	19	22	23	17	14	11	
3	32	29	29	34	28	30	25	11	12	10	
	32	29	27	33	21	21	22	20	14	10	
	23	25	29	28	24	26	18	16	10	5	
4	30	28	31	32	29	29	22	13	12	-	
	23	28	29	22	32	20	23	15	15	12	
	22	26	28	26	23	24	21	20	16	9	
5	27	29	29	32	30	28	25	21	18	16	
	25	27	29	29	25	25	26	-	-	13	
	27	30	29	32	21	30	24	25	19	18	

TABLE XXI
MOUTHPIECE NO. 15

Player	Partial										Note
	F	2	3	4	5	6	7	8	9	10	
1	33	29	38	27	23	17	10				
	32	35	25	26	18	15	10				
	24	29	22	20	9	8	6				
2	31	36	34	30	31	19	24				
	35	36	29	28	25	23	-				
	27	26	31	23	25	20	13				
3	34	28	27	29	26	19	21				
	36	28	28	31	23	21	14				
	26	27	29	26	23	12	13				
4	24	-	32	32	27	25	19				
	28	28	29	23	27	20	15				
	19	24	26	22	26	18	17				
5	30	34	34	29	26	22	21				
	40	31	29	29	32	24	20				
	21	32	38	28	25	25	21				
1	21	27	18	25	22	14	21	14	14	11	
	24	25	28	27	26	24	18	19	17	14	
	15	24	21	26	27	22	16	19	16	13	
2	24	27	32	29	30	34	29	27	26	20	
	21	24	35	32	28	29	29	28	27	26	
	14	23	18	22	26	25	23	22	20	17	
3	19	39	26	27	26	28	26	25	26	20	
	20	28	26	27	28	25	24	24	26	18	
	18	22	22	24	26	25	20	18	20	17	
4	22	22	30	25	25	26	25	26	25	20	
	16	25	36	24	19	24	22	23	22	20	
	18	17	23	23	24	21	25	21	22	18	
5	21	25	28	30	27	28	25	22	22	21	
	18	28	25	27	24	23	21	22	21	20	
	17	22	27	28	26	29	25	22	23	22	
1	29	34	29	31	24	18	12	8	10	3	$\frac{8}{8}$
	33	30	31	29	25	23	20	16	12	7	
	32	28	30	21	25	22	13	7	7	9	
2	28	33	35	25	40	27	26	22	20	15	
	26	38	28	32	31	31	27	21	16	12	
	26	20	29	27	24	23	18	14	12	10	
3	34	33	25	28	26	29	25	22	17	13	
	31	23	23	29	27	39	27	20	17	10	
	23	27	35	22	24	21	19	17	17	9	
4	29	27	29	31	28	27	24	20	16	\bullet	
	23	28	31	29	27	24	23	20	13	8	
	22	26	27	26	24	24	21	20	14	9	
5	26	28	30	31	28	27	24	19	13	11	
	26	27	24	23	28	25	18	23	19	18	
	27	29	41	29	27	26	25	21	16	13	

APPENDIX B

EVALUATION OF INDIVIDUAL MOUTHPIECES FOR EACH OF SIX TONES
TABLE XXII
EVALUATION OF INDIVIDUAL MOUTHPIECES FOR TUNING C

Partial	1	2	3	4	5	6	$7^{\text {M }}$	thp	ce 9	10	11	12	13	14	15
F	60.	61.	59.	61.	58.	57.	56.	59.	58.	57.	61.	57.	57.	58.	58.
	533	866	866	466	333	466	933	200	000	866	066	200	333	000	666
2	61.	62.	62.	64.	62.	61.	63.	64.	60.	60.	58.	63.	63.	61.	60.
	428	133	133	733	933	066	866	266	933	933	800	466	000	866	428
3	63.	63.	59.	60.	63.	64.	63.	62.	62.	62.	62.	63.	61.	61.	60.
	066	466	000	133	733	200	733	800	533	666	666	600	537	733	133
4	55.	57.	57.	58.	58.	54.	56.	58.	56.	56.	59.	58.	57.	54.	54.
	600	571	142	428	285	923	285	857	133	266	066	666	733	400	400
5	54.	54.	53.	53.	53.	48.	51.	52.	49.	50.	54.	53.	52.	50.	48.
	533	857	857	384	000	714	857	285	857	285	133	466	000	133	800
6	44.	44.	44.	46	40.	41.	43.	44.	40.	40.	41.	43.	42.	39.	38.
	857	571	615	615	571	428	285	285	000	461	714	857	142	571	400
7	35.	35.	34.	35.	34.	27.	31.	33.	30.	31.	34.	34.	33.	32.	32.
	428	666	000	538	857	571	692	428	923	538	428	571	000	615	000

TABLE XXIII

TABLE XXIV
EVALUATION OF INDIVIDUAL MOUTHPIECES FOR MIDDLE G

Partial	Mouthpieces														
F	57.	56.	56.	56.	56.	53.	55.	55.	54.	55.	53.	55.	56.	54.	55.
	200	266	266	000	133	733	066	333	000	066	866	866	266	666	333
2	58.	57.	60.	59.	60.	57.	56.	58.	57.	56.	57.	57.	56.	53.	57.
	000	866	400	066	000	333	333	133	600	133	200	066	533	466	466
3	60.	61.	60.	62.	57.	57.	58.	58.	58.	57.	58.	55.	59.	59.	59.
	933	200	400	142	866	066	533	133	133	866	933	200	200	600	600
4	59.	58.	56.	58.	58.	56.	58.	58.	55.	54.	56.	56.	56.	57.	55.
	142	933	000	000	400	933	800	533	866	400	000	933	533	066	066
5	54.	57.	53.	53.	54.	52.	50.	51.	51.	52.	54.	50.	50.	50.	54.
	400	466	733	333	400	133	400	333	200	133	133	266	400	133	400
6	52.	52.	49	51.	51.	49.	48.	50.	51.	50.	50.	50.	48.	51.	51.
	000	266	857	000	857	142	000	000	733	666	933	000	266	866	466
7	44.	46	43.	46.	42.	38.	41.	40.	43.	40.	41.	41.	43.	46.	42.
	266	714	142	461	000	571	285	428	666	266	866	466	857	142	933
8	40.	38.	35.	40.	37.	34.	34.	33.	36.	35.	34.	33.	36.	34.	36.
	400	428	714	000	521	428	461	384	400	538	615	733	285	769	000
9	35.	31.	28.	31.	27.	24.	25.	29.	28.	26.	28.	28.	30.	29.	28.
	454	078	285	692	384	153	538	333	428	307	307	142	307	538	533
10	30.	26.	24.	30.	22.	18.	20.	22.	22.	19.	24.	22.	23.	22.	21.
	600	200	166	000	181	923	600	000	363	538	181	181	384	307	000

TABLE XXV
EVALUATION OF INDIVIDUAL MOUTHPIECES FOR E5

Partial	1	2	3	4	5	6	7	$\begin{gathered} \text { outh } \\ 8 \end{gathered}$	$\begin{gathered} \text { iece } \\ 9 \end{gathered}$	10	11	12	13	14	15
F	65.	65.	65.	63.	64.	63.	64.	65.	65.	65.	62.	66.	66.	65.	64.
	733	066	466	733	400	733	000	866	000	733	800	266	933	866	933
2	67.	62.	64.	64.	62.	64.	64.	63.	61.	63.	65.	66.	62.	63.	64.
	466	400	933	133	133	000	933	866	866	600	600	133	933	600	133
3	63.	60	59.	61.	56.	56.	57.	60.	60.	58.	57.	56.	57.	60.	60.
	066	285	066	733	266	666	600	285	333	133	733	666	333	266	000
4	57.	54.	56.	56.	52.	54.	55.	53.	52.	50.	52.	52.	54.	51.	52.
	857	285	285	000	428	857	428	000	714	666	933	400	857	333	533
5	43.	43.	41.	41.	40.	42.	39.	39.	41.	40.	39.	38.	40.	38.	41.
	000	846	285	857	714	461	428	571	571	266	571	923	142	400	466
6	33.	33.	36.	32.	28.	34.	31.	27.	32.	27.	30.	30.	28.	29.	30.
	076	000	000	759	500	222	000	692	181	571	714	727	000	076	285

TABLE XXVI
EVALUATION OF INDIVIDUAL MOUTHPIECES FOR HIGH G

Partial	1	2	3	4	5	6	7	${ }_{8}$		10	11	12	13	14	15
F	67.	67.	67.	67.	67.	65.	67.	66	69.	62.	66.	67.	66.	67.	67.
	466°	$80{ }^{\circ}$	666	066	866	466	333	466	266	857	933	866	666	714	066
2	67.	63.	63.	46.	67.	68.	65.	67.	66.	63.	63.	65.	65.	64.	65.
	466	733	333	533	466	333	600	866	000	733	466	733	066	266	066
3	61.	59.	60.	60.	62.	60.	60.	60.	61.	59.	59.	59.	59.	62.	61.
	142	714	533	142	285	295	285	571	466	466	066	333	733	133	200
4	46.	48.	46.	49.	48.	46.	45.	46.	47.	46.	44.	46.	46.	46.	47.
	307	000	857	3] 8	857	714	000	142	142	400	571	800	666	266	200
5	39.	37.	40.	37.	36.	34.	37.	35.	34.	32.	34.	35.	35.	34.	35.
	692	818	800	846	500	461	333	285	461	333	571	384	076	000	714

TABLE XXVII
EVALUATION OF INDIVIDUAL MOUTHPIECES FOR HIGH C

Partial	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
F	73.	73.	71.	72.	70.	70.	71.	70.	71.	72.	69.	67.	72.	68.	70.
	066	428	200	266	933	800	733	266	200	800	866	571	533	266	400
2	65.	62.	61.	64.	61.	62.	62.	65.	64.	62.	64.	63.	61.	61.	64.
	200	714	600	266	733	133	666	466	533	266	933	066	866	266	533
3	58.	53.	52.	52.	56.	54.	53.	54.	52.	52.	54.	51.	51.	53.	52.
	666	285	714	714	142	000	857	266	266	400	400	466	466	600	266

BIBLIOGRAPHY

Books

Bach, Vincent, Embouchure and Mouthpiece Manual, Mt. Vernon, New York, Vincent Bach Company, 1954.

Backus, John, The Acoustical Foundations of Music, New York, W. W. Norton and Co., Inc., 1969.

Baines, Anthony, Musical Instruments Through the Ages, New York, Walker and Co., 1967.

Barbour, James, Murray, Trumpets, Horns, and Music, East Lansing, Michigan, Michigan State University Press, 1964.

Bate, Philip; The Trumpet and Trombone, New York, Norton, 1966.

Benade, Arthur, Horns, Strings, and Harmony, Garden City, New York, Doubleday and Co., Inc., 1960.

Buck, Percy Carter, Acoustics for Musicians, Oxford, The Chanson Press, 1918.

Carse, Adam von Ahn, Musical Wind Instruments, London, Macmillan and Co., Ltd., 1939.

Culver, Charles A., Musical Acoustics, Philadelphia, The Blakiston Co., 1956.

Daubeny, Ulric, Orchestral Wind Instruments, London, William Reeves, 1930.

Donnington, Robert, The Instruments of Music, New York, Barnes and Noble, 1962.

Dunk, John L., Tonality: Its Rational Basis and Elementary Development, London, pub. by author, 1926.

Farkas, Philip, The Art of Brass Playing, Bloomington, Indiana, Brass Pubiications, T962.

Geiringer, Kari, Musical Instruments--Their History in Western Culture, London, Oxford University Press, 1949.

Ha11, Jody, The Proper Selection of Cup Mouthpieces, Elkhart,
Helmholtz, Hermann von, On the Sensations of Tone, New York, Dover Publications, Inc., 1954.

Hindsley, Mark H., Wind Instrument Guides, Hammond, Louisiana, pub. by Ralph R. Pottle, 1960.
Hunt, Norman J., Guide to Teaching Brass, Dubuque, Iowa, William C. Brown, 1968.
Josephs, Jess J., The Physics of Musical Sound, Princeton, New Jersey, D. Van Nostrand Co., Inc., 1967.

Kent, Earle L., The Inside Story of Brass Instruments, E1khart, Indiana, Conn Corp. . 1956.
, and Jody C. Hall, The Language of Music Acoustics, EIkhart, Indiana, Conn Corp., 1957.
Levarie, Siegmund, and Ernst Levy, Tone, A Study in Musical Acoustics, Kent, Ohio, Kent State University Press, 1968.
Menke, Werner, History of the Trumpet of Bach and Handel, London, William Reeves, 1934.
Pottle, Ralph R., Tuning the School Band, Hammond, Louisiana, pub. by author, 1960 .
Richardson, E. G., The Acoustics of Orchestral Instruments and of the Organ, London, Oxford University Press, 1929.

Sachs, Curt, The History of Music Instruments, New York, W. W. Norton and Co. . 1940 .

Schilke, Renold O., How to Select a Brass Mouthpiece, Chicago, The Schilke Co., T967.

Winter, James Hamilton, The Brass Instruments, Boston, Allyn and Bacon, 1964.
Young, T. Campbe11, The Making of Musical Instruments, London, Oxford University press, 1947.

Articles

Drucker, V., "Nobility of Tone on the Trumpet," Symphony, V (April, 1951), 10.

Haynie, Hohn J., "On Selecting the Proper Mouthpiece," Southwestern Brass Journal, I (Fa11, 1957), 17-27.
Jacobs, Marion L., "Let's Talk About Cup-Mouthpieces," Etude, LXIV (December, 1946), 82.
, "Uses and Abuses of Cup Mouthpieces," Etude, LXV (J́anuary, 1947), 19, 52-53.

Kober, Raymond, P., "Effects of Mouthpieces on Trumpet Tone Quality," Brass Quarterly, I (March, 1958), 183-184.

Long, T. H., "The Performance of Cup Mouthpiece Instruments," $\frac{\text { Journal }}{892-901}$ of Acoustical Society of America, XIX,

Malek, Vincent F., "What is a Good Cornet or Trumpet Mouthpiece?" The Instrumentalist, VII (May, 1954), 22-23.

Miller, Dayton, C., "The Influence of Material of WindInstruments on Tone Quality," reprinted from Science, XXIX (January 29, 1909), 161-171.

Rohner, Traugott, "Standardization and Classification of Brass Mouthpieces," The Instrumentalist, VII (NovemberDecember, 1952), 30-40.

Schilke, Renold 0., "Dimensional Characteristics of Brass Mouthpieces," The Instrumentalist, VII (NovemberDecember, 1952, $28-30$.

Tetzlaff, Dan, "Bore Details are not Boring," International Musician, LVIII (February, 1960), 26-27.
"Mouthpieces--Trumpet Talk," International Musicians, LII (December, 1953), 26-27.

Webster, J. C., "An Electrical Method of Measuring the Intonation of Cup-Mouthpiece Instruments," Journal of Acoustical Society of America, XXIX, 902-906.

Young, Robert W., "On Performance of Cup-Mouthpiece Instruments," Journal of Acoustical Society of America, XX, 345-346.

Dictionaries and Encyclopedias

Ape1, Willi, "Mouthpiece," Harvard Dictionary of Music, Cambridge, Mass., Harvard University Press, 1944.

Stone, William H., "Mouthpiece," Grove's Dictionary of Music, ed. by Eric Blom, 5 th ed., London, Macmillan and Co.. 1954.

Unpublished Works

Cardwe11, William T., Jr., letter dated January 7, 1969.
Douglass, Robert Satterfield, "The History of the Trumpet Through the Baroque Era," unpublished master's thesis, School of Music, North Texas State University, Denton, Texas, 1953.
Malek, Vincent F., "A Study of Embouchure and Trumpet-Cornet Mouthpiece Measurements," unpublished doctoral dissertation, School of Music, Northwestern University, Evanston, Illinois, 1953.

O1son, R. Dale, letter dated November 27, 1968.
Remsen, "A Study of the Natural Trumpet and its Modern Counterpart," doctoral dissertation, University of Southern California, Los Angeles, 1960.

[^0]: ${ }^{1}$ James Hamilton Winter, The Brass Instruments (Boston, 1964), p. 11.
 ${ }^{2}$ Philip Bate, The Trumpet and Trombone (New York, 1966), p. 16 .
 ${ }^{3}$ Hermann von Helmholtz; On the Sensations of Tone (New York, 1954), p. 97.

[^1]: ${ }^{4}$ Willi Apel, "Mouthpiece," Harvard Dictionary of Music (Cambridge, Massachusetts, 1944).
 ${ }^{5}$ Karl Geiringer, Musical Instruments--Their History in Western Culture (London, 1949), p. 41.
 ${ }^{6}$ Bate, op. cit., p. 18 .

[^2]: ${ }^{7}$ Marion L. Jacobs, "Let's Talk About Cup-Mouthpieces," Etude, LXV (January, 1947), p. 19.
 ${ }^{8}$ Werner Menke, History of the Trumpet of Bach and Hande 1
 (London, 1934) p . 197 .

[^3]: ${ }^{15}$ Dan Tetzlaff, "Mouthpieces--Trumpet Talk," Interna-
 Musician, LII (December, 1953), p. 27. tional Musician, LII (December, 1953), p. 27.

 $$
 16_{\text {Winter, op. cit. }} \text { p. } 12
 $$

 17 Remsen, op. cit., p. 47.

[^4]: ${ }^{1}$ Vincent Bach, Embouchure and Mouthpiece Manual (Mt. Vernon, New York, 1954), p. 42.

 $$
 { }^{2} \text { Ibid. p. } 43 . \quad{ }^{3} \text { Ibid., p. } 53 .
 $$

[^5]: ${ }^{3}$ A decibel is a logarithmic unit used for measurements of sound levels. In this case no reference is made to absolute levels, the figures referring only to relative levels.

[^6]: $1_{\text {Hermann }}$ von Helmholtz, on the Sensations of Tone (New York, 1954), pp. 61-62. York, 1969), p. 101.

