478 research outputs found

    Slowing the floods in the U.K. Pennine Uplands... A case of waiting for Godot?

    Get PDF

    A network-indexbased version of TOPMODEL for use with high-resolution digital topographic data

    Get PDF
    This paper describes the preliminary development of a network index approach to modify and to extend the classic TOPMODEL. Application of the basic Beven and Kirkby (1979) form of TOPMODEL to high resolution (2.0 m) laser altimetric data (based upon the U.K. Environment Agency’s Light Detection and Ranging (LIDAR) system) to a 13.8 km(2) catchment in an upland environment identified large areas of saturated areas that remained unconnected from the drainage network even during an extreme flood event. This is shown to be a particular problem with using high resolution topographic data especially over large spatial scales. To deal with the hydrological consequences of disconnected areas, we present a simple network index modification in which saturated areas only connect when the topographic index is sufficient for there to be zero or negative saturation deficits along a complete flow path. This is combined with an enhanced method for dealing with the problem of pits and hollows which is shown to become more acute with higher resolution topographic data. The paper concludes by noting the implications of the research as presented for both methodological and substantive research that is currently under way

    Impacts of upland open drains upon runoff generation: a numerical assessment of catchment-scale impacts

    Get PDF
    Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment-scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip-related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response

    The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives

    Get PDF
    Currently, many of the methods used to predict the effect of vegetation on river flow suffer from one or both of the following problems: (1) a strong dependence on parameters that have a poor physical basis and which are only readily determined using empirical means; and (2) a poor conceptual basis, in terms of the way they represent the effects of vegetation on the flow, especially in higher dimensionality numerical models. This limits their contribution to problems that extend beyond basic hydraulic prediction (e.g., of water levels) to ecosystem understanding. In this study, we show how use of coupled biomechanical–hydraulic models may lead to a much-improved representation of a range of open-channel flow processes. Preliminary experiments over hypothetical vegetation canopies are producing very encouraging results and may provide the means for an improved representation of vegetation in higher dimensionality numerical models that may result in a better justification and more reliable identification of the conveyance parameters needed for both flood identification and the characterization of habitat

    Coherent flow structures in a depth-limited flow over a gravel surface : the role of near-bed turbulance and influence of Reynolds number

    Get PDF
    In gravel bed rivers, the microtopography of the bed exerts a significant effect on the generation of turbulent flow structures. Although field and laboratory measurements have indicated that flows over gravel beds contain coherent macroturbulent flow structures, the origin of these phenomena, and their relationship to the ensemble of individual roughness elements forming the bed, is not quantitatively well understood. Here we report upon a flume experiment in which flow over a gravel surface is quantified through the application of digital particle imaging velocimetry, which allows study of the downstream and vertical components of velocity over the entire flow field. The results indicate that as the Reynolds number increases (1) the visual distinctiveness of the coherent flow structures becomes more defined, (2) the upstream slope of the structures increases, and (3) the turbulence intensity of the structures increases. Analysis of the mean velocity components, the turbulence intensity, and the flow structure using quadrant analysis demonstrates that these large-scale turbulent structures originate from flow interactions with the bed topography. Detection of the dominant temporal length scales through wavelet analysis enables calculation of mean separation zone lengths associated with the gravel roughness through standard scaling laws. The calculated separation zone lengths demonstrate that wake flapping is a dominant mechanism in the production of large-scale coherent flow structures in gravel bed rivers. Thus, we show that coherent flow structures over gravels owe their origin to bed-generated turbulence and that large-scale outer layer structures are the result of flow-topography interactions in the near-bed region associated with wake flapping

    Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling

    Get PDF
    Vegetation is a characteristic feature of shallow aquatic flows such as rivers, lakes and coastal waters. Flow through and above aquatic vegetation canopies is commonly described using a canopy mixing layer analogy which provides a canonical framework for assessing key hydraulic characteristics such as velocity profiles, large-scale coherent turbulent structures and mixing and transport processes for solutes and sediments. This theory is well developed for the case of semi-rigid terrestrial vegetation and has more recently been applied to the case of aquatic vegetation. However, aquatic vegetation often displays key differences in morphology and biomechanics to terrestrial vegetation due to the different environment it inhabits. Here we investigate the effect of plant morphology and biomechanical properties on flow–vegetation interactions through the application of a coupled LES-biomechanical model. We present results from two simulations of aquatic vegetated flows: one assuming a semi-rigid canopy and the other a highly flexible canopy and provide a comparison of the associated flow regimes. Our results show that while both cases display canopy mixing layers, there are also clear differences in the shear layer characteristics and turbulent processes between the two, suggesting that the semi-rigid approximation may not provide a complete representation of flow–vegetation interactions

    High-resolution numerical modelling of flow-vegetation interactions

    Get PDF
    In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler–Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer

    Limits on the validity of infinite length assumptions for modelling shallow landslides

    Get PDF
    The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two-dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25 m). However, it may also be valid even at much finer grid resolutions (e.g. 1 m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25
    corecore