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Abstract

Shallow upland drains, grips, have been hypothesized as responsible for increased
downstream flow magnitudes. Observations provide counterfactual evidence, often relating
to the difficulty of inferring conclusions from statistical correlation and paired catchment
comparisons; and the complexity of designing field experiments to test grip impacts at the
catchment-scale. Drainage should provide drier antecedent moisture conditions, providing
more storage at the start of an event; but, grips have higher flow velocities than overland
flow so potentially delivering flow more rapidly to the drainage network. We develop and
apply a model for assessing the impacts of grips upon flow hydrographs. The model was
calibrated on the gripped case; then the gripped case was compared with the intact case by
removing all grips. This comparison showed that even given parameter uncertainty, the
intact case had significantly higher flood peaks and lower baseflows, mirroring field
observations of the hydrological response of intact peat. The simulations suggest that this is
because delivery effects may not to translate into catchment-scale impacts for three
reasons. First, in our case, the proportions of flow path lengths that were hillslope were not
changed significantly by gripping. Second, the structure of the grip network as compared
with the structure of the drainage basin mitigated against grip-related increases in the
concentration of runoff in the drainage network, although it did marginally reduce the mean
timing of that concentration at the catchment outlet. Third, the effect of the latter upon
downstream flow magnitudes can only be assessed by reference to the peak timing of other
tributary basins, emphasizing that drain effects are both relative and scale dependent.
However, given the importance of hillslope flow paths, we show that if upland drainage
causes significant changes in surface roughness on hillslopes, then critical and important
feedbacks may impact upon the speed of hydrological response.
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Introduction

It is not surprising that when faced with the need to increase economic productivity, conversion
of peatlands through drainage was a commonly adopted measure, to allow the expansion of
arable agriculture in lowlands, to prepare land for afforestation and to convert peat moorland to
land more suitable for grazing. Thus, Holden et al. (2004) report extensive drainage in New
Zealand, the Netherlands, Finland, Russia, Ireland and the U.K. In the U.K., economic subsidies
and incentives for land drainage resulted in rates of drainage of over 100,000 ha per year in the
early 1970s (Robinson and Armstrong, 1988) and by the early 1980s over 1.5 million hectares
of blanket peat bog had been drained in the U.K. uplands (Stewart and Lance, 1983). These
open cut drains (known as grips) are typically dug to around 0.5 m depth and 0.5 m width and
laid out in a herring-bone pattern with short lateral ditches 5 - 50 m apart running sub-parallel to
the slope contour and feeding into a central ditch (Holden et al., 2004).

Holden et al. (2004) provide a detailed review of the debate over the hydrological impacts of
grips. The debate has two elements, and each element has contrasting impacts (e.g. Ballard et
al., 2011). The first element relates to the effects of peatland drainage upon soil moisture
characteristics, which have the potential to impact upon both high flows and low flows. Water
balance calculations (e.g. Conway and Millar, 1960) have shown that an undrained upland
hillslope could retain more water than a drained hillslope. Burke (1967) found for Glenamoy
peats in Ireland that because the water table was generally high, undrained hillslopes tended to
produce rapid runoff more rapidly during storm events. Subsequent research suggested that
both of these processes can co-exist given the differences between the studies in their:
antecedent conditions, peat type (e.g. McDonald, 1973), drainage density (e.g. Robinson, 1980,
1985) and interactions between these variables (e.g. in some peats, the effects of a drain may
be laterally restricted (Stewart and Lance, 1991)). It is now generally recognized that peat
produces rapid runoff from near-saturated slopes and relatively low base flows (Burt et al.,
1997; Evans et al,, 1999; Holden et al., 2004; Ramchunder et al., 2009). In fact, drained
conditions would lead to a rapid increase in mineralization rates of organic matter and eventual
peat decay. Drains act to reduce water table height in two ways. First, by creating a hydraulic
gradient to draw water into the drain, producing water tables that are evenly drawn-down on
either side of a drain (Dunn and Mackay, 1996). However, the saturated hydraulic conductivity
of peat is so low that any localised drawdown towards the drain is likely to be limited to within 1-
2 m of the drain itself (Stewart and Lance, 1991; Holden and Burt, 2003a; Holden et al., 2006b).
Second, by redirecting upslope flows into the drain, reducing the contributing area downslope of
the drain (Holden et al., 2006b; 2011). Thus, as a working hypothesis, through changes in
moisture deficits, upland drainage should reduce peak flow by reducing the probability of
saturation at the onset of a storm event; and increase baseflow by improving the ease with
which the peat is able to drain during periods of low rainfall.

The second element of the effects of grips relates to their impacts upon the transfer of overland
flow to the river network. This has been less well investigated through studies of water balance
(Holden et al., 2004). In theory, velocities in a newly drained or actively maintained grip (i.e.
before revegetation) should be between one and two orders of magnitude greater than
velocities over the hillslope or associated with rapid subsurface processes due to differences in
surface roughness (Holden et al., 2006). Provided that the grip does not increase the total flow
path length, which would counter the effects of increased velocity, then this should deliver runoff
more rapidly to the river network and so potentially increase flood peaks.

A series of studies have proposed that grips could increase flood peaks (e.g. Lewis, 1957,
Oliver, 1958; Howe and Rodda, 1960; Conway and Miller, 1960; Ahti, 1980; Robinson, 1986;
Guertin et al., 1987; Gunn and Walker, 2000). Others have suggested that grips may reduce
flood peaks (e.g. Burke, 1967; Baden and Egglesman, 1970; Newson and Robinson, 1983).
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These studies are predominantly based upon either observing statistical changes in flood
characteristics before and after the land management change, or upon paired catchment
comparisons. Many fewer have instrumented catchments pre-drainage, during drainage and
after drainage to assess drain impacts (Holden, et al., 2004). Such studies are difficult because
of the need for years or even decades, of instrumentation in order to characterize the baseline
against which changes might be assessed given natural environmental variability. Further, it is
quite possible that these contrasting conclusions are not entirely irresolvable, primarily because
the magnitude of a flood peak depends upon the relative timing of the delivery of overland flow
to the drainage network from each of the contributing areas. Changing the timing of delivery
from one contributing area may increase or decrease downstream flood risk according to how
the changed timing interacts with other contributing areas. Designing field experiments to
assess these kinds of interactions is exceptionally difficult not least because of the huge
numbers of combinations of grip effects that remain to be assessed. Thus, there is a second
hypothesis for testing; that grips increase the speed of delivery of runoff to the channel network
in ways that increase flood risk downstream.

Extremely few studies have explicitly recognized that grips may lead to the competing
interaction of these two hypotheses (but see Holden et al., 2006). The main exception to this is
Wilson et al. (2010) who studied the effects of grip blocking. They found that blocking, quite
rapidly, resulted in more seasonally stable and marginally higher water tables, certainly
sufficient to increase the generation of saturation overland flow. However, albeit for only a very
small catchment (12.5 Ha), they suggest that the rate of response of the catchment to rainfall
was reduced, observing decreases in the 1 percentile excedance flow, based upon one year of
data pre blocking and one year of data post blocking. They attributed the reduction in rate of
response to a net effect of a reduced drainage density, the second hypothesis, notwithstanding
the observation of higher water tables, the first hypothesis.

A critical issue runs through the literature relating to grip impacts: the difficulty of inferring
conclusions from statistical correlation and paired catchment comparisons; and the complexity
of designing field experiments that can test multiple possible grip scenarios at the catchment-
scale. Recent developments in modeling are beginning to provide an alternative. Ballard et al.
(2009, 2011, in press) report a quasi-3D, physically-based model, which couples three one-
dimension models, one for each of subsurface, overland and channel flow, and apply it to test
the effects of grip blocking over a 200 m x 200 m area (0.04 km?). With this model, they were
able to show the importance of grip spacing, surface roughness and channel roughness for
hydrological response. However, their model does not upscale their results to entire
catchments. In this paper, we aim to develop and to apply a model that is parsimonious with
data typically available at the catchment scale and then to use it to test the differences in
hydrograph characteristics with and without grips for a 13.8 km? catchment. Given the
difficulties of adequately specifying the spatially-distributed characteristics (e.g. soil depth,
hydraulic conductivity) of even a small upland catchment, we include in the methodology an
explicit analysis of uncertainty.

Model Development

There are two critical elements of process representation required in the model. First, it must
represent the effects of grips upon moisture deficits. Strictly, this requires a full three-
dimensional solution of the shallow water equations for porous media (especially in peat soils).
However, such a solution would not produce a model parsimonious with available boundary
conditions (e.g. soil depth), initial conditions (e.g. soil wetness patterns), or parameterisation
data. Hence, we chose to use the Network Index version of Topmodel (Lane et al., 2004), as a
model that had sufficient process complexity to capture grip impacts on moisture dynamics and
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runoff delivery but still allow us to undertake many 1000s of model runs so as to explore the
effects of model uncertainty. We recognize two forms of model uncertainty in our analysis: (1)
the more commonly explored effects of parameter uncertainty; and (2) the less frequently
considered effects of choice of model structure, an issue that may impact also upon the level of
parameter uncertainty. Second, in order to capture the effects of the drain network upon the
timing of water delivery we also needed to modify Topmodel to represent, explicitly, flow routing
over the hillslopes and through the network. This is explained below.

The basis of Topmodel is well rehearsed (e.g. Beven and Kirkby, 1979; Beven, 1997; Beven
and Freer, 2001), and so the following section is brief. Topmodel partitions rainfall between
three components: (1) overland flow (Qo); (2) recharge of the unsaturated zone; and (3) flow in
the saturated zone (Qb). In simple terms, rain that falls on a unit of the landscape is assumed to
go into storage in the unsaturated zone. If the soil is saturated, there is no recharge and the
rainfall enters the channel network as overland flow, with an appropriate delay function (Beven
and Kirkby, 1979). There is also flow within the saturated zone, which is estimated making two
important assumptions (Beven and Kirkby, 1979): (1) runoff in the saturated zone is spatially
uniform; and (2) the hydraulic gradient within the saturated zone is approximated by the local
topographic slope, tanf, requiring topographic data of sufficient resolution to allow an adequate
description of the flow pathways without violating the assumption of local parallelism of the
water table and soil surface (Saulnier, et al., 1997).

In the standard Topmodel, it is assumed that the soil transmissivity function is an exponential
function of storage deficit (Beven and Kirkby, 1979), of a shape controlled by a ‘soil parameter’
m, which is constant within each hydrological unit, and a transmissivity (7o) at saturation (i.e.
with zero deficit when the soil is saturated to the surface) which may vary locally but is also
commonly held constant for each hydrological unit. Under this scenario, the local propensity to
saturation is controlled by the topographic index: In(a/tan@); and the transmissivity. It is then
possible to determine the saturated zone flux or base flow contribution (Qb, mhr') for each sub-
unit of the catchment as well as the rate of recharge to the saturated zone from the unsaturated
zone (Qv) (e.g. Beven and Wood, 1983). Within this system, moisture accounting is treated in a
lumped fashion for hydrologically similar areas: Qb and Qv are calculated for each time step;
and then, in order to account for all rain that falls on a given catchment, the average catchment

storage deficit ( D:) is updated:

— = At
Dt=Dt—l+q(Qb—Qv)t—l
[1]

where t is time. Although [1] is a lumped accounting model, for a given average catchment
storage deficit it is possible to determine the critical value of the topographic index above which
a location within the catchment will be saturated. Thus, it is possible to map the lumped
predictions of storage deficit back onto a distributed map of locations where the saturation
deficit is locally zero or negative and overland flow is likely to be occurring.

When the lumped predictions of storage deficit are mapped back onto catchment topographic
data a basic component of Topmodel’'s process conceptualization is violated (Lane et al., 2004):
a distinction can be made between saturated areas that expand out of and back into the
drainage network during the onset and end of a storm event; and saturated areas that remain
entirely disconnected by overland flow for some or all of the event. Lane et al. (2004) attribute
this to both a methodological difficulty associated with the effects of data uncertainty upon the
propensity to create artificial pits on the catchment surface but also a substantive process
where saturated areas can develop without being connected to the channel network. Assuming
that such areas can contribute runoff when disconnected may lead to them contributing runoff
too quickly. It will also change the rate at which the catchment becomes saturated (following
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from [1]) as unconnected saturated areas are assumed to contribute to overland flow when
water might otherwise re-infiltrate in zones of lower topographic index before the channel is
reached.

To deal with this problem, Lane et al. (2004) propose the Network Index modification of
Topmodel. The basic principle of the network index approach is straightforward: a saturated
area can only connect to the drainage network when all cells in the model between the
saturated area and the network are themselves saturated. Lane et al. (2009) tested the Network
Index as an index of connectivity in an upland landscape, where surface topographic controls
on rainfall routing are dominant. They found that despite being a static, spatially-derived statistic
it could explain a significant proportion of the variability in the probability and duration of a point
connecting by surface flow to the drainage network. However, its impact upon the time-
dependent modeling of river flows and its use in investigations of the effects of land
management activities upon runoff generation has yet to be considered.

The second major challenge in the Topmodel framework is that the timing of delivery of water
from sub-catchments will have an effect on the hydrograph. This timing is a function of the
distribution of travel times resulting from the spatial position of each zone contributing runoff
within each contributing area. This can be particularly important in relation to diffuse land
management impacts as these may change, for instance, the speed with which overland flow
can be delivered to the drainage network.

Here, we address this challenge by coupling the Network Index of Topmodel to a spatially-
distributed unit hydrograph approach (e.g. Maidment, 1993; Maidment et al.,1996; Olivera and
Maidment, 1999; Saghafian et al., 2002; Liu et al. 2003; Du et al., 2009) that uses the time to
equilibrium (fe) approach pioneered by Saghafian and Julien (1995). We make three
assumptions: (1) a single continuous and time-invariant flow path within a storm event (e.g.
Maidment et al., 1996) but allowing for the effects of modifications to these flow paths by land
management activities; (2) a linear system response in which at higher flows, travel times are
independent of the amount of runoff being routed (e.g. Kull and Feldman, 1998; Olivera and
Maidment, 1999); and (3) independence of response where two locations share elements of the
same flow path (e.g. Maidment et al., 1996). Spatially-distributed unit hydrograph approaches
have been found to reproduce the rapid runoff component of measured hydrographs extremely
effectively (e.g. Maidment ef al., 1996). We recognize that travel time treatments should change
with the amount of runoff being generated and delivered from upstream contributing areas
(Saghafian et al., 2002) but we view this as a future model development.

We modify the spatially distributed unit hydrograph to account for the spatial pattern of
saturation in the catchment. The critical topographic index value above which a cell is saturated
can be calculated from the catchment average storage deficit using equation 1. We generate a
separate unit hydrograph for each topographic index class then combine them to generate the
hydrograph for all overland flow producing areas. We define three flow domains (hillslope, grip,
channel) each with an associated average velocity. We calculate the travel time through each
domain for each cell by combining its flow path length through that domain with its velocity. We
then sum these travel times to calculate the total travel time for that cell and generate a
frequency distribution of travel times for all cells in that topographic index class. Overland flow
produced by cells in the topographic index class is then routed to the outlet according to its
travel time distribution.

It is worth emphasizing that in the default Topmodel version, with and without the Network Index
treatment, there is still a routing treatment based upon delaying overland flow at each sub-
catchment outlet by an estimate of the time for translation to the downstream catchment outlet.
This is retained in our default treatments. By adopting a spatially-distributed unit hydrograph
approach, our analysis allows for time of travel effects at the within sub-catchment scale which
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may be critical in situations where land management measures change significantly the timing
associated with overland flow and hence subsurface flow paths (e.g. surface drains).

Methodology

Model application

In summary, The above model developments allow for four different model structures: (I) the
default Topmodel; (II) Topmodel with a Network Index treatment alone, which only allows
generated overland flow to leave the catchment if there is saturation along the flow path from
the site of generation to the drainage network; (lll) Topmodel with the proposed SDUH
treatment alone, which controls the speed with which runoff reaches and travels through the
drainage network according to the flow paths followed; and (IV) Topmodel combined with both
the Network Index and proposed SDUH.

The Oughtershaw Beck sub-catchment

The model was applied to Oughtershaw Beck sub-catchment of the River Wharfe, North
Yorkshire (Figure 1). The catchment area is 13.8 km? with an altitudinal range of 297 m from a
low point of 353 m above Newlyn Datum. The catchment was artificially drained by grips during
the 1970s, before which it was primarily blanket peat. We had access to 5 m resolution IfSAR
elevation data collected during Intermap’s NEXTmap Britain campaign and supplied through the
U.K.’s Environment Agency. We use the terrain model (DTM) in which non-ground points, (e.g.
trees, buildings and walls) have been removed since these can act as unrealistic barriers to
both subsurface and overland flow. Milledge et al. (2009) have shown that these data are
reliable for this kind of environment.

Two sets of hydrological data were available for the project, supplied by the U.K.’s Environment
Agency, and associated with an initiative that started in 1997, the Upper Wharfedale Best
Practice Project, designed to improve our understanding of how catchment management might
be used to address hydrological and water quality problems in upland catchments: (1) a
continuously recording rain gauge, which provided 15 minute interval precipitation data; and (2)
a stage recorder at the catchment outlet, which has been coupled with spot flow gaugings to
produce a stage-discharge relationship and hence a continuous record of discharge. Evidence
suggested that when the flow reaches bankfull, at about 2.2 m>s™, the form of the relationship is
less well-established due to the difficulty of measuring these high flows directly. Thus, the peak
flows, in particular, have some uncertainty associated with them.

Model application

The model was applied with an hourly time-step, chosen to reflect measured rates of change of
discharge in the catchment. We generated the topographic index for the catchment using the 5
m resolution DTM and calculating: slope using the Zevenbergen and Thorne (1987) algorithm;
and upslope contributing area using the multiple flow algorithm (Quinn et al., 1991) after filling
sinks using the Planchon and Darboux (2002) method. Table 1 summarises the model
application in terms of the parameters associated with the model, their initial values, and their
revised values in response to calibration. In the absence of climate data, we chose to treat the
proportion of rainfall (effective rainfall, ER) available for infiltration into the soil column as an
adjustable parameter. The following sections detail the calibration and model assessment steps
in full. In summary, we began by undertaking a single parameter perturbation sensitivity
analysis for each structural version of the model to identify sensitive parameters, with sensitivity
quantified with reference to a set of Objective Functions defined below. Then, for sensitive
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parameters, we undertook a Monte Carlo (MC) type sensitivity analysis, sampling very wide
parameter ranges, and used these results to produce a narrower set of plausible parameter
ranges. These narrower ranges were intensively resampled using MC methods to identify a set
of parameter ranges that defined the calibrated model. These ranges were then: applied in the
same MC framework to a randomly chosen period of data not used in the calibration process to
provide a split sample test; and also used to generate a set of model predictions including
parameter uncertainty. Finally, the model was applied with and without grips, again in the same
MC framework, to see if there were significant changes in hydrological response given
parameter uncertainty.

Model sensitivity analysis

The analysis is based upon the assumption that the check data, the downstream flow gauge,
provides a reliable time series of river discharge. Our first stage of analysis is to reduce the
number of parameters influencing model behaviour so as to undertake a more intensive
sampling of parameter space in a Monte Carlo framework. Thus, we set the expected
parameter values in Table 1 based upon a combination of literature review and previous
experience. We then undertake a doubling and a halving of each parameter, one at a time (see
Campologno, 2000; Saltelli et al., 2000) and quantify the response of a suite of objective
functions to these parameter changes. We undertake the one at a time analysis for each
structural combination of the model (i.e. | to IV above). Following McCuen (1973) quantification
of the one at a time analyses is based upon Relative Sensitivity (RS) that compares the linear
rate of change of each objective function to the rate of change of each parameter and
standardizes these rates of change by the ratio of the mean of the parameter values used to the
mean of the objective function values derived:

_dOF <P>
| dP "< OF >

[2]

Following Beven (2000), we do not use the one at a time analysis as a means of inferring model
performance. Rather, we use it: (1) to assess whether model response to parameter
perturbation is as expected (e.g. expected directions of change); and (2) to reduce the number
of parameters that need to be included in the Monte Carlo based uncertainty analysis, which is
computationally intensive, but which allows for a finer resolution exploration of model response.
One particular issue arises with this analysis: where model response to parameter perturbation
is non-linear the parameter range explored could be in a zone that is asymptotic or strongly
parabolic. We moderated this issue by considering the extent to which those parameters
identified as most sensitive fitted with prior expectations and through visually exploring how
model output was responding.

Central to this stage of the work, and the uncertainty analysis described below, was selection of
a suite of Objective Functions to quantify the relationship between model predictions and field
observations. We focus upon undertaking model uncertainty analysis and model calibration with
reference to the outlet discharge. Rather than using a single Objective Function, we considered
a suite of Objective Functions (Table 2) and aimed to look for: (1) parameters that were
generally sensitive across multiple Objective Functions; and (2) parameters that during the one
at a time analysis suggested strong sensitivities but for perhaps only one or two of these
Objective functions.

Model uncertainty analysis and calibration

In the second stage of the analysis, those parameters identified as being sensitive using one at
a time analysis were subject to a Monte Carlo based uncertainty analysis. We chose this
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methodology because we expected that parameter interactions could condition model response
significantly and we approached the analysis using a two-stage methodology. We used it as
part of model calibration by using the Objective Function set, as obtained for model runs with
wide parameter ranges, to narrow those parameter ranges in the next set of runs. Then, the
analysis was repeated using this narrowed parameter ranges.

First, for those parameters identified as sensitive, we specified a parameter range based upon
literature review and prior experience which encompassed the range of plausible parameter
values (Table 1, Monte Carlo (MC) Run 1). We then randomly sampled 30,000 times within
these parameter ranges making no a priori assumptions about the possible distribution of
parameter values within those ranges. The same set of parameter ranges was applied to all four
model structures to produce 120,000 model runs. For each model structure (i.e. | to 1V), we
ranked each parameter set for each Objective Function. We calculated the mean and standard
deviation of parameter values associated for each (n + k) ranks for each Objective Function, for
n =10 and k= 0 : 5000. We then used significance testing to see the extent to which the mean
and standard deviation for each of the n : k parameter values differed from the a priori set of
parameter values, for each Objective Function.

Second, we used the significance testing above to refine the parameter ranges to those shown
in Table 1 (MC Run 2). The mean and standard deviation of parameters that resulted in the best
Objective Functions varied as a function of both k and Objective Function, with the widest
standard deviations in all cases found for the largest k. Thus, we defined the lowest value for
each parameter range as the minimum of the set of (mean - standard deviation) values for all
Objective Functions; and the highest values as the maximum of the set of (mean + standard
deviation) values for all Objective Functions, with the mean and standard deviation calculated
for the n : k parameter values found to be significantly different from the a priori range. For the
second run, as with the first, we sampled within these refined ranges making no prior
assumption about the distribution of possible parameter values between ranges because: (1)
although the parameter ranges are based upon distributions (i.e. mean and standard
deviations), they are based upon a composite analysis of the ensemble set of all means and
standard deviations; and (2) we did not believe that these prior means and standard deviations
were based upon a sufficiently fine sample of the parameter space for them to be entirely
reliable at this stage.

After MC Run 2, we were able to undertake a number of analyses. First, to understand model
uncertainty, to assist with the identification of equifinality and to further constrain optimal model
parameter values, we produced two-dimensional probability density functions (e.g. Figure 2)
showing the percentage of data points found in each combination of parameter value and
Objective Function for all Objective Functions. We did this for each model structure to
understand the effects of different model structures on the associated uncertainty. Second, we
considered the relative performance of all 120,000 MC Run 2 simulations to see if, given
parameter uncertainty, it was possible to identify differences between different model structures.
Third, for each model structure (i.e. | to IV) we also repeat the process of ranking each
parameter set for each Objective Function and then plotting the mean and standard deviation of
parameter values associated with each (n + k) ranks for each Objective Function, for n = 10 and
k =0 :5000 (e.g. Figure 3). This allows us to identify and to compare the parameter values that
optimize the Objective Functions for each model structure. It also allows us to identify how
many simulations, for each model structure, have parameter values not significantly different (at
p = 0.05) from the complete parameter set used in the second MC run. Where the number of
simulations is high, the model is effectively strongly equifinal with respect to that parameter.
Where it is low, that parameter tends to require a constrained range of possible parameter
values. Fourth, we used the Objective Functions to weight the calculation of a mean predicted
discharge and an associated standard deviation of predicted discharge. This weighting function
was based upon the assumption that each Objective Function should be given equal weight in
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the weighting process. For each simulation, the linear distance between a given Objective
Function for that simulation and the optimal value of that Objective Function for all simulations
was determined. This was then scaled linearly by the range of values of that Objective Function
simulated for all simulations. For each simulation, this produced one weight for each Objective
Function. The six weights were multiplied together for each simulation and divided by the sum
of the multiplied weights across all simulations. These weights were used in the calculation of
the mean and standard deviation of model predictions. The weights are determined linearly
because we have no other information to support a more complex calculation.

Finally, we sought to identify the structure and parameter values required for a calibrated model
by looking at the intersection of optimized parameter ranges for each Objective Function. We
identify the possible parameter range for a given Objective Function and parameter as the
mean = 1.96 standard deviations. We then cross-compare these parameter ranges using
statistical significance testing and use this as the basis of a final, calibrated parameter range.

Split sample test

In order to provide some assessment of the calibrated model, and recognizing the lack of
additional sites suitable for model testing, we applied the model to a randomly selected, non-
overlapping, time period of the same duration, such that we could assess the model against
data not used in the uncertainty and calibration exercise. We randomly sampled 1000
parameter sets from the calibrated parameter ranges and applied these parameter sets to this
second time period of data, using the combined model. We calculated the mean and standard
deviation of each Objective Function for the 1,000 simulations. We repeated this step for the
calibration period. Finally, we compared the results for the randomly selected time period with
the calibration period.

Assessment of open drain impacts upon hydrological response

We assess the effects of removing grips upon hydrological response under the assumption that
there is no change in the parameter ranges required for the model to be calibrated. We discuss
this issue after the results have been presented.

Model development: results and discussion

One at a time sensitivity analysis

Table 3 shows the results from the one at a time sensitivity analysis and confirms substantial
variability in the Relative Sensitivity of model parameters. For the default formulation, the
effective rainfall (ER) has the highest relative sensitivity across almost all objective functions,
followed by the Topmodel parameter m and transmissivity (To). Introduction of the network
index correction does not change this substantially, except that some objective functions
become slightly more sensitive to variation in m and, slightly fewer, more sensitive to To. These
results are in marked contrast to the introduction of the spatially-distributed unit hydrograph
treatment. Comparison with the default model suggests substantially greater sensitivity of most
objective functions to variations in m and To and reduced sensitivity of some objective functions
to variations in ER. Thus, the model structure used impacts upon the ways that parameters
interact sufficiently to be detected in Objective Functions. As the spatially distributed unit
hydrograph increases both the number of parameters available and the sensitivity of objective
functions to default model parameters it both offers a wider range of calibration options but also
raises the greater possibility of equifinality for different parameter combinations. For the purpose
of exploring this equifinality, the analysis also identifies a number of parameters that can be
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discounted on the basis of exceptionally low levels of relative sensitivity. We set the threshold
for inclusion as any parameter with a relative sensitivity for one or more objective functions >10-
5. These are flagged in bold in Table 3, and include six parameters for the default and Network
Index versions and the same six parameters plus three SDUH parameters in situations when
the spatially-distributed unit hydrograph treatment is used.

Uncertainty analysis

Table 1 shows the parameter ranges used in the first MC run and then the refined values
applied to the second MC run. Results from applying the refined parameter values during the
second MC run are shown as probability density functions (pdfs) for each Objective Function
and each Parameter in Figure 2 for the combined model (i.e. including both the Network Index
and SDUH modifications). Figure 2 shows that a small number of parameters have a substantial
impact upon most Objective Functions. Other parameters show equifinality when judged against
some or all Objective Functions in that a wide range of parameter values produces equally
plausible outcomes. Three parameters appear to be particularly important. First, the hillslope
velocity results in consistently worse Objective Functions for values less than 0.1 ms™ and, but
to a less notable extent, for values greater than 0.2 ms™ (Figure 2). Second, the pdfs for the two
Topmodel soil parameters, m and To, also appear to have preferential Objective Function
values although, as with the hillslope velocity, there is also substantial scatter. The soil
parameters constrain the sensitivity of runoff generation to rainfall: higher values of m cause a
more rapid reduction in hydraulic conductivity with depth, so making saturated conditions easier
to generate; lower values of To, reduce the effective rate of lateral throughflow through the soil
column, so having the same effect. Thus, taken together, the Objective Functions for the
combined model are most sensitive to parameters that control the rate of rapid runoff generation
(i.e. propensity to saturation) and its transport over hillslopes to the channel, whether a drain or
a stream. Parameters introduced to control the speed of routing through the grips and streams
show clear equifinality with good and poor Objective Functions obtained for all values of the
parameters used and this provides a first indicator that the effects of grips upon the hydrograph
through the speed of delivery effect may not be particularly significant.

Figure 3 shows the mean t+ standard deviation of the set of k simulations with Objective
Functions better than the k™ simulation, again for the combined model. The x plotting point is
the Objective Function for the k™ simulation and in all cases the Objective Functions are sorted
so that Objective Functions degrade from left to right. Figure 3 allows slightly more conclusive
observations to be made. In interpreting Figure 3, if a mean parameter value changes as a
function of Objective Function, then this suggests that there is some association between the
parameter values being used and the Objective Functions that result. If the standard deviation is
close to this mean and then widens as the Objective Function degrades, it suggests that the
best model simulations require a relatively narrow range of values of that parameter. Eventually,
once all simulations are considered (i.e. k = 30,000), the curves will approach the mean +
standard deviation of the original parameter range used in the second MC run. This allows the
possibility of significance testing to identify the proportion of simulations that, for each
parameter and each Objective Function, is not significantly different from the mean of the
parameter range used. A high proportion of simulations suggests that a wide range of
parameter values will optimize the model and the model is, in effect, equifinal with respect to
that parameter/Objective Function combination.

Figure 3 suggests that five of the nine parameters used in the Combined Model have a
particular influence on model performance: IRZS; m; To; ER; and hillslope velocity. For hillslope
velocity and To, and to a lesser extent m, and across most, if not all, Objective Functions, the
standard deviation of parameters that deliver a given level of performance increases rapidly.
This suggests that these parameters need to be tightly constrained in order to deliver the best
model solutions. The levels of equifinality in the Combined Model (Table 4) reflect the
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importance of these five parameters: they are associated with generally lower levels of
equifinality than the other four parameters. However, there is some variation in the importance
of these five parameters between Objective Functions. For example, for m, RMT has relatively
high level of equifinality, suggesting that m is not an important control on the timing of flood
peaks. This in marked contrast to hillslope velocity which has higher levels of equifinality for
Objective Functions based on global model performance (i.e. MUE, NSE) but much lower levels
of equifinality for Objective Functions that assess prediction of individual or a small number of
flow peaks (i.e. PQE, RMQ, RMT). The peak discharge error needs particular comment.
Although the peak discharge error has variable levels of equifinality when different parameters
are compared (Table 4), Figure 3 shows that standard deviations of the parameter values that
optimize the Objective Function are generally wide across all parameter ranges. Either the
model does not capture the peak discharge correctly or the peak discharge is in error. Whereas
the other flood peaks recorded in the record were only slightly larger than the bankfull flow, and
so close to the calibration range of the stage-discharge relationship at Oughtershaw, the largest
peak (from which the peak discharge error was calculated) was substantially higher than the
range maximum, and therefore potentially in error, especially as we do not allow ER to rise (and
hence modeled flows to fall) within a storm event.

Figure 4 shows mean and standard deviation of the weighted mean model predictions of
discharge, with the associated standard deviation, for the Combined Model as compared with
the observed flow. The observed flow is generally bracketed by the £95% standard deviation
and shows that for the significant majority of time the model has been calibrated effectively on
the measured discharge given parameter uncertainty. Table 5 shows the ranges of parameter
values recommended in subsequent use of the model for this catchment and rainfall record and
which we used for the split testing of the model.

Split sample test

Figure 5 shows the results of the split sample test for the six Objective Functions used for the
uncertainty analysis. None of the distributions of Objective Functions are significantly different
(at p=0.05) from those obtained during the calibration period suggesting that the calibrated
parameter ranges do hold for this second period.

Model structure and uncertainty analysis

Thus far, the uncertainty analysis has focused upon the properties of the Combined Model.
Here, we compare this Combined Model with the Default Model and the Network Index only and
SDUH only treatments. Figure 6 shows the result of ranking all simulations for all model
structures (i.e. 120,000 simulations) and then comparing where in this rank order different
structural versions of the model appear. We do this for all Objective Functions. To illustrate the
interpretation of Figure 6, with a global excedance probability of 0.4 in Figure 6a, the model
structure excedance probability is 0.6 for the Combined Model: around 60% of the Combined
Model simulations appear in the best 40% of all model simulations. The striking pattern in
Figure 6 is that the curves for the SDUH model versions, whether with or without the Network
Index, plot clearly above the Default and Network Index only versions, except for the RMQ
Objective Function. The extent to which this is the case varies between Objective Functions. It
is clearest in relation to the RMT where over 80% of both models involving the SUH correction
appear in the best 50% of all simulations. The SDUH model versions also dominate the best 10
to 20% of all simulations for MUE and NSE. Thus, it appears that the SDUH delivers better
model predictions notwithstanding parameter uncertainty.

The Network Index versions of the model are less clear. On its own, it performs more effectively
for MUE, NSE and COR but it's simulations appear generally lower in the rank order than the
SDUH only model. Adding in the Network Index version to the SDUH treatment does not appear
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to result in a clear improvement relative to the SDUH only model, as whilst the PQE and COR
are marginally better, the MUE, NSE and RMQ are very marginally worse. Thus, the conclusion
is that the Network Index correction does not seem to have a significant impact upon
hydrograph representation in this case.

Figure 7 shows the ranked mean and standard deviation of parameter values, plotted against
Objective Function, for just two of the parameters (m and T,) obtained using the Default Model.
Comparing Figure 7a and 7b with Figures 3b and 3c respectively shows statistically significant
(p>0.05) changes in the parameter values for m and To and IRZS that optimize model
performance. The standard deviations associated with parameter values that produced the very
best Objective Function values are also narrower. This is confirmed in Table 4, which shows
that levels of equifinality in the Default Model are generally much lower, especially for To,
implying that in the Default Model these parameter values matter much more. Figure 7 shows
that the Default Model requires lower values of m and higher values of To.

Discussion

The above results suggest that central to representing the measured discharge record in the
study catchment using Topmodel is a Spatially-Distributed Unit Hydrograph treatment. The
SDUH modification produced the best model simulations across all six Objective Functions
considered, even given parameter uncertainty (Figure 6), although it introduced three new
parameters (velocities for the hillslope, grips and channels). Of these three, the hillslope velocity
was found to be of particular importance, requiring values between 0.1 and 0.2 ms™' when
judged across all Objective Functions in order to obtain optimal model performance (Figure 2).
This range is interesting in comparison with some of the very few data obtained on overland
flow velocities for upland peat catchments (Holden et al., 2008). Holden et al. showed that the
overland flow velocities depended on vegetation cover, slope and flow depth, a much more
complex set of controls than we include here, but had typical values only marginally smaller
than those found to be optimal here.

Two of the Topmodel soil parameters, m and T,, were also found to have preferential Objective
Function values (Figure 3). Compared with the default model (Figure 7), higher m values and
lower T, values were required to optimize model predictions. Higher m implies a more rapid
decline in hydraulic conductivity and lower T, a slower lateral subsurface flux, making hillslope
velocities more important. Thus, in the default model, the lack of representation of hillslope
velocity at the within hydrological response unit scale is delivered by increasing the lateral
subsurface flux to greater levels (lower m, harder to generate overland flow; higher T,, greater
lateral subsurface flux). This is the sense in which m and T, represent effective parameters in
the default model, producing the right effect albeit for the wrong reasons. The problem with
effective parameterization in the default case is that changing m and T, will impact upon other
elements of process representation, such as the propensity to generate overland flow, which will
be reduced as well as the initial soil moisture conditions at the start of the storm event. Further,
as Table 4 shows, introducing the SDUH treatment, although this results in new data needs, it
increases the level of equifinality associated with two parameters, themselves with an
exceptionally poor resemblance to possible field process measurements. Equifinality can arise
for two fundamentally different reasons: (1) for model realisations that matter which cannot be
resolved by the data available; and (2) where a parameter generally is of less importance than
others. Whilst (1) might be a negative interpretation of the identification of equifinality in a model
(cf. Hamilton, 2007), (2) is an important finding if the objective is the production of a minimally-
complex, perhaps parsimonious, model.

The difficulty of effective parameterisation is confirmed in Figure 8, which shows the behaviour
weighted model predictions and observed discharge for each model structure, illustrating a
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critical effect of the SDUH correction: it introduces some hydrograph smoothing in a way that
produces more realistic hydrographs when compared with the observed discharge. Whilst
effective parameter values may be used to optimise Objective Functions (cf. m, Figure 7a) there
may be a limit to which they can capture critical hydrological processes. In this catchment, it
appears that the spatial distribution of flow routing that the SDUH captures is critical, and its
lack of inclusion is only partially compensated for through parameterization. It is important to be
critical of the assumption that a more complex model, which introduces more parameters, is
problematic because it increases the difficulty of identifying unique parameter sets. Here, strong
interactions between parameters, as well as those interactions introduced with the more
complex model, did not increase levels of equifinality. Rather, adding parameters changed the
hydrological response of other elements of the system in ways that made them more
meaningful. Most importantly, the split testing of model predictions showed no significant
changes in model performance when the same parameter ranges were used in the model for a
second, non-overlapping time-period.

Assessment of drain impacts

Figure 9 shows the effects of the global removal of grips as compared with the gripped case.
We emphasise that this will not be the same as blocking all of the grips in the catchment
because field evidence suggests that blocking grips does not immediately and necessarily result
in the restoration of intact peat (Holden et al., 2011), although there may be some parallels. It is
clear from Figure 9 that the dominant effect of grip removal in this catchment is to produce
higher peak flows and lower base flows, suggesting that it is the rearrangement of the drainage
and increase in catchment wetness following grip removal which dominates over the reduction
in overland flow velocity. Superimposed on this are some apparent reductions in peak flow
when grips are removed, but these are entirely produced by changes in timing (of one or two
time steps) of the flood peak. Thus, the results confirm the observation that blocking grips leads
to raised water tables (e.g. Price et al., 2003; Holden, 2005; Worrall et al., 2007; Armstrong et
al., 2010; Wilson et al., 2010) and a greater tendency to surface saturation and so overland flow
(e.g. Shantz and Price, 2006) during storm events. Figure 10 shows the change in topographic
index associated with grips, showing the spatially extensive potential for reductions in surface
saturation associated with gripping. Figure 10 is calculated without representing any changes in
soil or vegetation characteristics that follow from gripping, indicating that there will be a
substantial impact upon catchment wetness associated with the rearrangement of surface
drainage patterns (effectively changes in upslope contributing area) even before other effects
are considered. The more effective removal of water increases soil moisture deficits, so making
it more difficult to generate floods in a gripped landscape.

What is perhaps surprising is that this is not countered in any way by the theoretical changes
arising from surface overland flow being routed into drains, especially given the differences in
optimal grip and hillslope velocities (Table 5). There are a number of potential reasons for this,
which we evaluate here. First, it is possible that introducing grips increases velocities for some
flow paths, but increased flow path lengths counter this, especially as grips were commonly
installed along contours, preventing water from following the downslope route. The extent to
which this is the case will depend on the grip network and how it is laid out in the catchment.
Our analysis shows that introducing grips increases flow path lengths by more than one cell
width in 2.1% of cases, but generally reduces flow path lengths (41.0% of cases), suggesting
that this is an unlikely hypothesis. Indeed, Figure 11a shows that the gripped case has a very
similar frequency distribution of flow path lengths to the intact case. However, Figure 11b and
11c demonstrate a more important and second possibility. They show the frequency
distributions of the time required for delivery to the catchment outlet from the onset of a
rainstorm for all grid cells. In theory, the more kurtotic this distribution, the greater the proportion

14



88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

of the catchment area that delivers flow at the same time. Figure 11b shows that with the default
hillslope velocity of 0.15 ms™ and grip velocity of 0.45 ms™, introducing grips does not appear to
increase the kurtosis significantly but, rather, shifts the entire distribution marginally towards
shorter times. Increasing the grip velocity to 0.90 ms™” does not change this observation
significantly. Thus, for the catchment outlet considered here, the grips do not change the peak
flow, but they do cause that peak to occur marginally earlier. Figure 12 shows the cumulative
distributions of the data in Figure 11b. For the majority of the distribution, the curves are
parallel, but shifted, suggesting the shape of the distribution does not change, but the position of
the distribution does. Figure 13 quantifies these results for a range of grip and hillslope
velocities. First, it shows that for all hillslope velocities, introducing grips does marginally reduce
the mean time required for delivery to the catchment outlet (Figure 13a) but this is countered by
small reductions in the level of kurtosis, or peakiness (Figure 13b). These reductions are small,
but they show that despite grips having potentially greater local velocities, it is the interactions of
these effects, as would be controlled by grip density and location at the level of the drainage
network, that determines how grip velocities change the kurtosis of the delivery times. In this
case, they are reduced. Second, and reflecting the results of the uncertainty analyses reported
above (Figures 2, 3), the dominant control on the sensitivity of the catchment scale hydrological
response is the hillslope flow velocities (Figure 13). The reason for this dominance is illustrated
in Figure 14, which shows that the majority of each flow path is hillslope and that drainage only
changes this marginally (between 5 and 10%), restricting the effects that grips can have upon
the travel times to the catchment outlet.

The above discussion leads to three critical observations. The first is a network effect, in which
the structure of the drainage basin controls the degree and the timing of runoff concentration in
the network (travel time concentration), and hence flood peaks. In this example, the density and
layout of grips, in relation to the structure of the drainage network, is such that the reduction in
travel times due to increased grip velocities do not translate into greater travel time
concentration. The second is a relative effect. Although grips marginally reduced the level of
travel time concentration (Figure 13b) compared to the intact case for the catchment outlet
considered here, they also marginally reduced the mean travel times. Thus, the catchment as a
unit responds marginally earlier. Whether or not this has an impact downstream will depend
both on general flow attenuation but also how this altered timing relates to other downstream
contributing catchments. The impacts of grips are entirely relative and scale dependent. Third,
and most importantly, because hillslopes maintain the highest proportion of flow path lengths,
even with gripping, it is the hillslopes that dominate the hydrological response. In this study, we
have not considered possible roughness changes associated with between-drain, hillslope
zones. The transition to drier surface conditions could both increase this roughness (where
there is a transition to more shrubby vegetation, such as Ericacea spp); but it could also reduce
it, especially with degradation of organic matter in the surface layer and possible erosion to
leave a bare soil surface, with velocity characteristics more similar to those of the drains
themselves (albeit with depth-related velocity differences).

There are some important caveats to the results that are reported here. First, the emphasis here
has been upon comparison of the intact and gripped case. Extending the results to grip blocking
needs caution. It is possible that a more strategic removal of grips might still be beneficial,
especially where their removal is designed to reduce the concentration of travel time
distributions. Second, the SDUH treatment that we have used is as simple as it can be: we take
no account of variations within the catchment in travel times related to slope, changes in
overland flow depth during a storm event, and the roughness values associated with differences
in land cover. Given the experiments in Figures 12 and 13, the magnitude of the differences that
would need to be associated with these effects for the grip velocity effect to have an impact
would have to be much greater than the differences between these variables that have been
measured in the field (see Holden et al., 2008). Our findings probably hold notwithstanding the
relative simplicity of the SDUH treatment we use. Third, draining the peat will have caused
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changes to the soil system such as the development of soil pipes (e.g. Holden, 2006).
Removing grips may not reverse this process initially and it may be some time before there is a
return to an intact peat system (Holden et al., 2011). Thus, there are likely to be leads and lags
in the actual hydrological response to grip removal that will remain in the system and which are
not represented in the model that we include here. Fourth, the model does not explicitly
represent infiltration-excess overland flow. In a heavily degraded peatland system, it is possible
that bare peat becomes relatively hydrophobic with very low infiltration rates, and increased
probability of infiltration-excess overland flow. It may be that the storage effect of peat is much
reduced such that removing grips does not lead to changes in catchment wetness, as what is
dominant is the already-reduced infiltration rates associated with peat degradation. Finally,
further research is required, probably by comparison with  more physically-based
representations (e.g. Ballard et al. 2009, 2011), to assess the extent to which the physical basis
of the model presented here is sufficient. However, such research is unlikely to undermine the
critical observation reported herein: the reduction in attenuation often thought to be associated
with faster drain velocities linked to upland drains may be substantially countered by the ways in
which the drains change the shape of the drainage network, ultimately increasing flow path
lengths.

Conclusions

This paper describes a model for assessing the impacts of shallow upland drains, grips, upon
flow hydrographs in a form that allows for calibration and uncertainty analysis; and applies this
model to explore the effects of global removal of grips. The model development showed that
representing the hydrological response of the study system required the classic Topmodel to be
combined with a spatially-distributed unit hydrograph treatment. Correction for the effects of
disconnected saturated zones, following Lane et al. (2004) was found to be less important.
Strong interactions were found between parameters and the analysis of model performance
showed that: (1) parameters in the classic Topmodel compensated partially for the effects of not
including a spatially-distributed unit hydrograph treatment; and (2) that introducing this
treatment, although providing more parameters, reduced rather than increased levels of model
equifinality. More complex models, with more parameters, may not increase model equifinality if
the sensitivity of model predictions to those parameters is relatively high.

Grip removal produced significantly higher flood peaks and lower baseflows, even given
parameter uncertainty, reflecting the characteristics commonly reported from field observations.
This was primarily related to the effect of grips on creating drier antecedent conditions, as
compared with the effects of grips upon reducing travel times to the catchment outlet and so
reducing attenuation. In fact, in the catchment studied here, faster flow velocities in the grips did
not contribute to an increase in flood peaks because: grips comprise a small proportion of most
total flow path lengths, and the structure of the drainage network also mitigates the grip velocity
effect. Significantly, it is necessary to assess whether a particular grip network increases or
reduces the concentration of travel times, as indicated by a statistic such as kurtosis. In
addition, a small number of grips actually increased flow path lengths, countering velocity
effects. Far more important appears to be the extent that grips change the surface vegetation
and thus hillslope flow velocities.

These changes need to be considered at the catchment scale for two reasons. First, the spatial
structure of the grip network in the catchment has to be considered. Second, a distinction has to
be made between: (a) changes in travel time concentration arising from grips, as compared with
the intact case, which may or may not increase local flow magnitudes in the catchment; and (b)
changes in the timing of catchment response, which may increase or decrease downstream
flows, according to how other tributary catchments are responding. Even if grip velocity effects
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dominate over soil moisture effects, the impact of upstream drainage on downstream flood
magnitude depends entirely on where you measure it in the catchment.
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Tables

Table 1. Model parameters, mid-point values used in one at a time sensitivity analysis,
sensitivity identified from this analysis, parameter ranges used for the Monte Carlo

simulations and final recommended parameter ranges.

Parameter Mid-point One at a MC Run 1 MC Run 2 Rec. Rec. Rec.

values used time Parameter Parameter min. mid. max.

inone ata sensitivity Range Range

time
sensitivity
analysis

IRZS 0.002 Yes 0.001 :0.100 | 0.002:0.050 0.010 0.015 0.020
Initial depth of water
stored in the root zone
(m)
Maximum depth og 0.02 No 0.02
water that can be stored
in the root zone (m)
M 0.01 Yes 0.001 :0.100 | 0.002:0.050 0.040 0.045 0.050
Topmodel m parameter,
which controls the rate
od decline of
transmissivity with
increasing storage
deficit
To 1 Yes 0.10 :10.00 0.20:1.00 0.37 0.40 0.43
Transmissivity (m23'1)
uzTb 50 Yes 1.0:100.0 30.0:70.0 40.0 48.0 56.0
Unsaturated zone time
delay (hours)
InitQS 0.0000328 Yes 0.00001 : 0.00005 : 0.00065 | 0.00075 | 0.00085
Initial subsurface flow 0.00010 0.00090
(m/hr)
ER 0.50 Yes 0.20:1.00 0.60:0.80 0.65 0.67 0.69
Effective rainfall
(proportion of rainfall
entering the
nonsaturated zone)
Ccv 1 Yes 0.001 : 1.000 0.30:0.80 0.46 0.56 0.66
Channel Velocity (ms'1)
HV 0.01 Yes 0.001 : 1.000 0.01:0.60 0.10 0.15 0.20
Hillslope Velocity (ms™)
GV 1 Yes 0.001 : 1.000 0.20:0.80 0.35 0.45 0.55

Grip Velocity (ms'1)
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Table 2. Objective Functions used in the analysis

Objective Function Abbreviation | Units | Comments

Global Mean Unsigned MUE m°s” | A measure of the average error. Main problem is that it

Error places emphasis on all observations, when the focus is flow
extremes. Retained as obtaining a generally robust
hydrological representation we deemed to be important.

Error in the predicted PQE m’s”" | An important measure given the focus of the modeling upon

magnitude of the largest flood flows, but highly sensitive to errors in application of the

measured discharge stage-discharge relationship at high flows.

Nash-Sutcliffe Efficiency NSE None | The model efficiency, with behavioural models being defined
as those with NSE values greater than zero. Maximum
possible NSE value is 1. Main problem is that it places equal
emphasis on all observations, when the focus is flow
extremes. Retained as obtaining a generally robust
hydrological representation we deemed to be important.

Root Mean Square RMQ m°s” | Recognises the importance of flood flows, but reduces the

Error in magnitude of reliance upon the most extreme flood (and associated data

predictions of the 10 uncertainty).

largest observed

discharges

Root Mean Square RMT m’s” | Recognises the importance of flood flow timings as well as

Error in timing of magnitudes.

predictions of the 10

largest observed

discharges

Correlation COR None | A measure of the general association between variability in

measured and predicted flows, that allows for representation
of both magnitude and timing errors in a single statistic.
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Table 3. Rs values for one at a time parameter perturbation results

Default Topmodel
IRZS

MaxRZS

m

To

UZTD

InitQS

ER

Network Index Version

IRZS
MaxRZS
m

To
uzTb
InitQS
ER

SDUH Version
IRZS
MaxRZS
m

To
uzTb
InitQS
ER

Chv

HV

GV

Combined Version
IRZS
MaxRZS
m

To
uzTb
InitQS
ER

Chv

HV

GV

MUE
0.00609
0.00000
0.04894
0.07152
0.00608
0.01931
0.10514

MUE
0.00558
0.00000
0.08683
0.01321
0.00478
0.01794
0.15549

MUE
0.00391
0.00000
0.09465
0.15546
0.00365
0.01313
0.02700
0.00008
0.02388
0.00006

MUE
0.00458
0.00000
0.14974
0.13966
0.00434
0.01480
0.05015
0.00008
0.04046
0.00008

Peak Q
error
0.00000
0.00000
0.97146
0.17121
0.03354
0.00000
2.83000
Peak Q
error
0.00000
0.00000
1.77916
0.23307
0.00651
0.00001
2.88014
Peak Q
error
0.00000
0.00000
0.24863
0.90139
0.01052
0.00000
0.94978
0.00101
0.22193
0.00062
Peak Q
error
0.00000
0.00000
0.72361
1.67111
0.01551
0.00001
1.29705
0.00118
0.20354
0.00063

NSE
0.01999
0.00000
0.23321
0.07060
0.04455
0.06163
2.59444

NSE
0.01984
0.00000
0.37903
0.10922
0.03657
0.06504
2.43327

NSE
0.05614
0.00000
2.23016
2.87724
0.11067
0.18708
0.15142
0.00174
0.75358
0.00103

NSE
0.03185
0.00000
1.49702
1.39056
0.06673
0.10284
2.69030
0.00077
0.34966
0.00029

RMSE 10
largest Q
0.00212
0.00000
0.01468
0.26714
0.01793
0.01297
0.61590
RMSE 10
largest Q
0.00212
0.00000
0.00883
0.21520
0.00819
0.01076
0.49573
RMSE 10
largest Q
0.00179
0.00000
0.12985
0.11734
0.00215
0.00592
0.43482
0.00000
0.02497
0.00003
RMSE 10
largest Q
0.00223
0.00000
0.19080
0.10415
0.00384
0.00702
0.55289
0.00001
0.01232
0.00001

RMSE t, 10
largest Q
0.00000
0.00000
0.12118
0.14270
0.00579
0.01905
0.01953

RMSE t, 10
largest Q
0.00000
0.00000
0.06701
0.05612
0.01090
0.03658
0.10424

RMSE t, 10
largest Q
0.00000
0.00000
0.39662
0.24857
0.13173
0.03299
0.27169
0.00000
0.18678
0.00000

RMSE t, 10
largest Q
0.02639
0.00000
0.40599
0.08120
0.09225
0.03299
0.24001
0.03299
0.06837
0.03299

Correlation
0.00113
0.00000
0.04951
0.01855
0.00631
0.00705
0.04147

Correlation
0.00114
0.00000
0.04358
0.00489
0.00232
0.00626
0.05769

Correlation
0.00548
0.00000
0.11442
0.06950
0.00409
0.01799
0.05175
0.00039
0.00356
0.00014

Correlation
0.00388
0.00000
0.09535
0.02979
0.00218
0.01243
0.04751
0.00016
0.00404
0.00007
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70

71 Table 4. Levels of model equifinality (parameter definitions in Table 1): for each model
72 structure, the percentage of parameter values that are not significantly different (at p = 0.05)
73 from the complete parameter set used in the second MC run.
74
PARAMETER IRZS m To uzTD InitQS ER ChV HV GV
1. Default
MUE 49.6 33.2 4.1 100.0 100.0 6.0
PQE 100.0 6.1 5.3 98.1 100.0 4.6
NSE 69.6 16.7 4.2 97.9 100.0 4.9
RMQ 78.5 13.5 4.7 100.0 100.0 4.9
RMT 5.0 12.7 4.9 100.0 100.0 58.5
COR 5.1 29.9 5.2 100.0 100.0 76.0
2. Network Index
MUE 39.9 44.8 4.0 92.4 100.0 10.5
PQE 100.0 5.0 12.4 100.0 100.0 5.7
NSE 59.1 17.4 4.9 90.1 99.3 5.4
RMQ 64.0 14.7 7.1 100.0 99.9 6.0
RMT 5.2 7.9 14.3 100.0 100.0 36.9
COR 5.1 22.0 4.6 100.0 100.0 52.4
3. SDUH
MUE 30.0 21.7 6.9 100.0 100.0 10.6 81.4 5.9 100.0
PQE 99.3 5.1 8.0 99.8 99.8 4.8 100.0 7.3 100.0
NSE 48.5 11.4 4.9 100.0 100.0 5.2 81.6 5.9 100.0
RMQ 40.8 10.0 6.3 99.5 99.7 5.3 100.0 16.1 100.0
RMT 14.9 66.2 18.0 100.0 95.5 39.2 84.3 8.1 100.0
COR 5.2 271 13.6 100.0 100.0 59.7 100.0 6.9 100.0
4. Combined
MUE 27.0 23.2 10.6 100.0 99.4 12.9 87.0 37.5 100.0
PQE 100.0 4.6 14.0 100.0 100.0 71 98.5 7.8 100.0
NSE 34.3 9.8 8.3 100.0 99.1 5.9 84.1 56.4 99.8
RMQ 38.0 8.4 12.5 100.0 99.8 6.2 100.0 12.7 95.4
RMT 14.4 77.4 17.8 100.0 88.7 39.9 100.0 6.5 99.3
COR 5.4 17.6 12.6 100.0 100.0 23.2 99.5 7.5 95.6
75
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Table 5. Summary of final model calibration results, with 95% confidence limits

Mean Unsigned Error (m/s) 0.292 +0.018
Mean Peak Discharge Error (cumecs) -1.900 £0.502
Mean Nash Sutcliffe Efficiency 0.700 +£0.042
Mean Root Mean Square Error in discharge for 10 largest flow peaks 1.020 +£0.164
(cumecs)

Mean Root Mean Square Error in timing for 10 largest flow peaks 1.913 £1.301
(hours)

Correlation 0.869 +£0.055
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Figures

Figure 1. map of the Oughtershaw study catchment showing the channel and drain (grip)
networks and the stage gauge used in the analysis. The background map is elevation data
(colours) and shaded relief from the 5 m resolution IfSAR DTM used in the model.

Figure 2. Probability density function plots derived for after the second Monte Carlo run using
the combined model for the six objective functions (Figures 2a to 2i)

Figure 3. The mean and standard deviation of parameter values for all model realisations equal
to or better than a given value of the Objective Function, for each Objective Function (3a to 3f),
for the combined model. Plots are labelled such that best simulations are always closest to the
y-axis.

Figure 4. Observed and predicted flows for the calibration period, showing 95% uncertainty
limits.

Figure 5. Mean and standard deviation of Objective Functions obtained using the calibrated
parameter ranges shown in Table 2 but applied to a second, randomly-selected and non-
overlapping time period.

Figure 6. Rank performance of each model structure for each Objective Function

Figure 7. As per Figure 3, but using the default version of Topmodel, and showing results for the
m and To model parameters only, for illustration.

Figure 8. Predicted and observed hydrographs for each model structure

Figure 9. Predicted discharges with and without grips.

Figure 10. Estimated change in topographic index as an index of soil moisture changes (blue
shows where removing grips produces wetting; red, drying))

Figure 11. The distributions of total flow path length (11a) and the time required for delivery to
the catchment outlet for grip velocities of 0.45 m/s (11b) and 0.90 m/s (11c), for the intact and
gripped cases.

Figure 12. Cumulative frequency distributions of the time required for delivery to the catchment
outlet for the intact and gripped cases.

Figure 13. The mean time required for delivery to the catchment outlet (13a) and the kurtosis in
the distribution (13b) for different combinations of grip velocity and hillslope velocity. O refers to
the case without grips. Kurtosis is non-dimensional, x 10°.

Figure 14. Frequency distribution of the proportion of flow paths that are hillslope, for both the
intact and the gripped case.
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