19,324 research outputs found
Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional
We discuss self-consistently obtained ground-state electronic properties of
monolayers of graphene and a number of beyond graphene compounds, including
films of transition-metal dichalcogenides (TMDs), using the recently proposed
strongly constrained and appropriately normed (SCAN) meta-generalized gradient
approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA
results are compared with those based on the local density approximation (LDA)
as well as the generalized gradient approximation (GGA). As expected, the GGA
yields expanded lattices and softened bonds in relation to the LDA, but the
SCAN meta-GGA systematically improves the agreement with experiment. Our study
suggests the efficacy of the SCAN functional for accurate modeling of
electronic structures of layered materials in high-throughput calculations more
generally
Composite Scalars at LEP: Constraining Technicolor Theories
LEPI and LEPII data can be used to constrain technicolor models with light,
neutral pseudo-Nambu-Goldstone bosons, Pa. We use published limits on branching
ratios and cross sections for final states with photons, large missing energy,
jet pairs, and b bbar pairs to constrain the anomalous Pa Z0 Z0, Pa Z0 photon,
and Pa photon photon couplings. From these results, we derive bounds on the
size of the technicolor gauge group and the number of technifermion doublets in
models such as Low-scale Technicolor.Comment: 27 pages (including title page), 15 figures, 6 tables. version 2: In
addressing PRD referee comments, we have significantly expanded our
manuscript, to include detailed discussion of limits from LEP II data, as
well as expanding the number or specific models to which we apply our
results. As a result, we have changed the title from "Z0 decays to composite
scalars: constraining technicolor theories
Orders and dimensions for sl(2) or sl(3) module categories and Boundary Conformal Field Theories on a torus
After giving a short description, in terms of action of categories, of some
of the structures associated with sl(2) and sl(3) boundary conformal field
theories on a torus, we provide tables of dimensions describing the semisimple
and co-semisimple blocks of the corresponding weak bialgebras (quantum
groupoids), tables of quantum dimensions and orders, and tables describing
induction - restriction. For reasons of size, the sl(3) tables of induction are
only given for theories with self-fusion (existence of a monoidal structure).Comment: 25 pages, 5 tables, 9 figures. Version 2: updated references. Typos
corrected. Several proofs added. Examples of ADE and generalized ADE
trigonometric identities have been removed to shorten the pape
Recommended from our members
Light-Induced Currents at Domain Walls in Multiferroic BiFeO3.
Multiferroic BiFeO3 (BFO) films with spontaneously formed periodic stripe domains can generate above-gap open circuit voltages under visible light illumination; nevertheless the underlying mechanism behind this intriguing optoelectronic response has not been understood to date. Here, we make contact-free measurements of light-induced currents in epitaxial BFO films via detecting terahertz radiation emanated by these currents, enabling a direct probe of the intrinsic charge separation mechanisms along with quantitative measurements of the current amplitudes and their directions. In the periodic stripe samples, we find that the net photocurrent is dominated by the charge separation across the domain walls, whereas in the monodomain samples the photovoltaic response arises from a bulk shift current associated with the non-centrosymmetry of the crystal. The peak current amplitude driven by the charge separation at the domain walls is found to be 2 orders of magnitude higher than the bulk shift current response, indicating the prominent role of domain walls acting as nanoscale junctions to efficiently separate photogenerated charges in the stripe domain BFO films. These findings show that domain-wall-engineered BFO thin films offer exciting prospects for ferroelectric-based optoelectronics, as well as bias-free strong terahertz emitters
Probing the subshell closure: factor of the Mg(2) state
The first-excited state ~factor of Mg has been measured relative to
the factor of the Mg() state using the high-velocity
transient-field technique, giving . This new measurement is in
strong disagreement with the currently adopted value, but in agreement with the
-shell model using the USDB interaction. The newly measured factor,
along with and systematics, signal the closure of the subshell at . The possibility that precise -factor
measurements may indicate the onset of neutron admixtures in first-excited
state even-even magnesium isotopes below Mg is discussed and the
importance of precise excited-state -factor measurements on ~shell
nuclei with to test shell-model wavefunctions is noted.Comment: 8 pages, 5 figure
The Collider Phenomenology of Technihadrons in the Technicolor Straw Man Model
We discuss the phenomenology of the lightest SU(3)_C singlet and non-singlet
technihadrons in the Straw Man Model of low-scale technicolor (TCSM). The
technihadrons are assumed to be those arising in topcolor--assisted technicolor
models in which topcolor is broken by technifermion condensates. We improve
upon the description of the color--singlet sector presented in our earlier
paper introducing the TCSM (hep-ph/9903369). These improvements are most
important for subprocess energies well below the masses of the technirho and
techniomega, and, therefore, apply especially to e+e- colliders such as LEP and
a low--energy linear collider. In the color--octet sector, we consider mixing
of the gluon, the coloron V_8 from topcolor breaking, and four isosinglet
color--octet technirho mesons. We assume, as expected in walking technicolor,
that these technirhos decay into qbar-q, gg, and g-technipion final states, but
not into technipion pairs. All the TCSM production and decay processes
discussed here are included in the event generator Pythia. We present several
simulations appropriate for the Tevatron Collider, and suggest benchmark model
lines for further experimental investigation.Comment: 42 pages, 7 figure
Scalars from Top-condensation Models at Hadron Colliders
We study the production and decay of neutral scalars and pseudo-scalars at
hadron colliders, in theories where the top-quark mass is the result of a
condensate. We show that the dominant decay channel for masses below
the threshold is the flavor changing mode . This is a consequence
of the non-universal nature of the underlying interactions in all
top-condensation models and provides a model-independent signature of these
scenarios. We show that an upgraded Tevatron is sensitive to a sizeable region
of the interesting parameter space and that the LHC will highly constrain these
models through this flavor violating channel.Comment: 4 pages, 4 figures. Minor changes in figures for readibility. final
version to appear in PR
Pseudo-Goldstone Boson Effects in Top-Antitop Productions at High Energy Hadron Colliders and Testing Technicolor Models
We study the top quark pair production process p+p(anti-p)-->top+antitop in
various kinds of technicolor (TC) models at the Fermilab Tevatron Run II and
the CERN LHC. The s-channel neutral pseudo-Goldstone bosons (PGB's) contribute
dominately to the production amplitudes from its coupling to the gluons through
the triangle loops of techniquarks and the top quark. Cross sections in
different TC models with s-channel PGB contributions are calculated. It is
shown that the PGB effects can be experimentally tested and different TC models
under consideration can be distinguished at the LHC. Therefore, the
p+p-->top+antitop process at the LHC provides feasible tests of the TC models.Comment: 10 pages in RevTex and 4 PS-files for the figures. Paramemter range
is changed, and some references are added. Version for publication in Phys.
Rev.
Probabilistic theories with purification
We investigate general probabilistic theories in which every mixed state has
a purification, unique up to reversible channels on the purifying system. We
show that the purification principle is equivalent to the existence of a
reversible realization of every physical process, namely that every physical
process can be regarded as arising from a reversible interaction of the system
with an environment, which is eventually discarded. From the purification
principle we also construct an isomorphism between transformations and
bipartite states that possesses all structural properties of the
Choi-Jamiolkowski isomorphism in quantum mechanics. Such an isomorphism allows
one to prove most of the basic features of quantum mechanics, like e.g.
existence of pure bipartite states giving perfect correlations in independent
experiments, no information without disturbance, no joint discrimination of all
pure states, no cloning, teleportation, no programming, no bit commitment,
complementarity between correctable channels and deletion channels,
characterization of entanglement-breaking channels as measure-and-prepare
channels, and others, without resorting to the mathematical framework of
Hilbert spaces.Comment: Differing from the journal version, this version includes a table of
contents and makes extensive use of boldface type to highlight the contents
of the main theorems. It includes a self-contained introduction to the
framework of general probabilistic theories and a discussion about the role
of causality and local discriminabilit
- …