7,105 research outputs found

    Inferring the Rate-Length Law of Protein Folding

    Get PDF
    We investigate the rate-length scaling law of protein folding, a key undetermined scaling law in the analytical theory of protein folding. We demonstrate that chain length is a dominant factor determining folding times, and that the unambiguous determination of the way chain length corre- lates with folding times could provide key mechanistic insight into the folding process. Four specific proposed laws (power law, exponential, and two stretched exponentials) are tested against one an- other, and it is found that the power law best explains the data. At the same time, the fit power law results in rates that are very fast, nearly unreasonably so in a biological context. We show that any of the proposed forms are viable, conclude that more data is necessary to unequivocally infer the rate-length law, and that such data could be obtained through a small number of protein folding experiments on large protein domains

    Intermolecular correlations are necessary to explain diffuse scattering from protein crystals

    Full text link
    Conformational changes drive protein function, including catalysis, allostery, and signaling. X-ray diffuse scattering from protein crystals has frequently been cited as a probe of these correlated motions, with significant potential to advance our understanding of biological dynamics. However, recent work challenged this prevailing view, suggesting instead that diffuse scattering primarily originates from rigid body motions and could therefore be applied to improve structure determination. To investigate the nature of the disorder giving rise to diffuse scattering, and thus the potential applications of this signal, a diverse repertoire of disorder models was assessed for its ability to reproduce the diffuse signal reconstructed from three protein crystals. This comparison revealed that multiple models of intramolecular conformational dynamics, including ensemble models inferred from the Bragg data, could not explain the signal. Models of rigid body or short-range liquid-like motions, in which dynamics are confined to the biological unit, showed modest agreement with the diffuse maps, but were unable to reproduce experimental features indicative of long-range correlations. Extending a model of liquid-like motions to include disorder across neighboring proteins in the crystal significantly improved agreement with all three systems and highlighted the contribution of intermolecular correlations to the observed signal. These findings anticipate a need to account for intermolecular disorder in order to advance the interpretation of diffuse scattering to either extract biological motions or aid structural inference.Comment: 12 pages, 5 figures (not including Supplementary Information

    Tributes to Professor Cyril A. Fox, Jr.

    Get PDF
    Cy Fox often forgets that he was supposed to be “only” an academic. For three decades, as he helped thousands of law students through the intricacies of the Rule in Shelley’s Case, or watched them calculate a “life in being plus twenty one years” for the Rule Against Perpetuities, he failed to appreciate that law school was supposed to be an amalgam of theory and confusion, not the place for his teaching law students about helping real people solve real life problems

    Direct radiative capture of p-wave neutrons

    Get PDF
    The neutron direct radiative capture (DRC) process is investigated, highlighting the role of incident p-wave neutrons. A set of calculations is shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV, a crucial region for astrophysics. The cross section for neutron capture leading to loosely bound s, p and d orbits of 13-C is well reproduced by the DRC model demonstrating the feasibility of using this reaction channel to study the properties of nuclear wave functions on and outside the nuclear surface. A sensitivity analysis of the results on the neutron-nucleus interaction is performed for incident s- as well as p-waves. It turned out that the DRC cross section for p-wave neutrons is insensitive to this interaction, contrary to the case of incident s-wave neutrons. PACS number(s): 25.40Lw,21.10Gv,23.40.HcComment: 16 pages, REVTeX file, PostScript file, .dvi fil

    Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment.

    Get PDF
    Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention
    • …
    corecore