3,261 research outputs found

    Repairing Landsat Satellite Imagery Using Deep Machine Learning Techniques

    Get PDF
    Satellite Imagery is one of the most widely used sources to analyze geographic features and environments in the world. The data gathered from satellites are used to quantify many vital problems facing our society, such as the impact of natural disasters, shore erosion, rising water levels, and urban growth rates. In this paper, we construct machine learning and deep learning algorithms for repairing anomalies in the Landsat satellite imagery data which arise for various reasons ranging from cloud obstruction to satellite malfunctions. The accuracy of GIS data is crucial to ensuring the models produced from such data are as close to reality as possible. Reducing the inherent bias caused by the obstruction or obfuscation of reflectance values is a simple but effective way to more closely represent the reality of our environment with satellite data. Using clean pixels from previously acquired satellite imagery, we were able to model the bias present in each scene at different times and apply algorithms to fix the inconsistencies. The machine learning model decreased the mean absolute error by an average of 80.1% compared to traditional repair algorithms such as mosaicking

    Novel fused arylpyrimidinone based allosteric modulators of the M1 muscarinic acetylcholine receptor

    Get PDF
    Benzoquinazolinone 1 is a positive allosteric modulator (PAM) of the M1 muscarinic acetylcholine receptor (mAChR), which is significantly more potent than the prototypical PAM, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline- 3-carboxylic acid (BQCA). In this study, we explored the structural determinants that underlie the activity of 1 as a PAM of the M1 mAChR. We paid particular attention to the importance of the tricyclic scaffold of compound 1, for the activity of the molecule. Complete deletion of the peripheral fused benzene ring caused a significant decrease in affinity and binding cooperativity with acetylcholine (ACh). This loss of affinity was rescued with the addition of either one or two methyl groups in the 7- and/or 8-position of the quinazolin-4(3H)-one core. These results demonstrate that the tricyclic benzo[h]quinazolin-4(3H)-one core could be replaced with a quinazolin-4(3H)-one core and maintain functional affinity. As such, the quinazolin-4(3H)-one core represents a novel scaffold to further explore M1 mAChR PAMs with improved physicochemical properties

    Drawing and Twisting of Graphene Fibers

    Get PDF
    The aim of this project was to develop a more automated process for drawing and twisting of graphene fibers than was currently in place. This was implemented by having two chemical baths with variable speed rollers at either end, and intermediate roller to spool fiber between stages, and a twisting cylinder with integral spool to twist the fiber as it is collected. The goal was to have this first iteration deliver a working prototype, however due to manufacturing delays and timing constraints, that will be missed. A second follow-on project would be able to continue the work presented here and fulfil the stated aims of the project. The bulk of the structure is fabricated from PVC pieces waterjet cut from a large sheet. This allowed for quick manufacture of most pieces in the design. From there, some secondary machining was done to add mounting and fastening locations. PVC pieces were attached to one another primarily through the use of #8-32 screws with washers and a brass threaded insert. Due to PVC being a soft material, tapping threads into it directly was avoided. The baths were sealed mostly with an automotive gasket compound to permanently seal one half, while one wall was sealed with a silicon gasket laser cut from a sheet. This makes the bath wall removable for maintenance. Two baths were made to allow multiple stages of drawing or one coagulation stage immediately followed by a drawing stage. From the drawing, the fiber advances to the auxiliary roller. The range of speeds required to get desired properties at all stages did not permit the fiber to go from coagulation to drawing to twisting in one process, therefore following the drawing bath, it is wound on to the auxiliary roller. After the drawing process is finished, the fiber can be pulled from the auxiliary roller into the twisting mechanism, running at a lower speed so as to give the requisite number of turns per length of fiber to yield the optimal fiber twist angle. The twisting mechanism is a PVC cylinder supported on horizontal rods and driven by a motor mounted beneath the cylinder and connected via a plastic belt. The cylinder, motor, and support rods are encased in a box with one face open to allow the fiber into the cylinder. Inside the cylinder is a spinning rod mounted across the diameter that collects the fiber as it is twisted. The aim of the project called for a quick-release mechanism so that the rod can be removed quickly for storage of the fiber or other testing steps. All of the motion is powered by small 5V DC motors that go through a 20:1 worm gear reduction. This increases the torque while decreasing the speed from roughly 10,000 RPM to more useful ranges. The motors are powered through a NPN power transistor with the logic being controlled by an Arduino Nano that takes in an analog voltage and converts it to a PWM waveform to control the motor duty cycle. In total, the project came in under budget, using 84.01% of the 1500allocatedfortheproject.Athirdofthiscostcamefromtheneedtoexpeditethewaterjetcuttingbygoingtoathirdpartyoutsideofthecampuscommunity.Hadoncampusresourcesbeensuccessfullyutilized,thetotalcostwouldhavebeenclosertothe1500 allocated for the project. A third of this cost came from the need to expedite the waterjet cutting by going to a third-party outside of the campus community. Had on campus resources been successfully utilized, the total cost would have been closer to the 925.38 estimate first presented

    High value timber composite panels from hardwood plantation thinnings.

    Get PDF
    Identifying processing strategies and products that suit young plantation hardwoods has proved challenging with low product recoveries and/or unmarketable products being the outcome of many trials. The production of rotary veneer has been demonstrated as an effective method for converting plantation hardwood trees. Across nine processing studies that included six different plantation species (Dunn’s white gum, spotted gum, Gympie messmate, spotted gum hybrid, red mahogany and western white gum), simple spindleless lathe technology was used to process 914 veneer billets totally 37.4 m3

    High value timber composite panels from hardwood plantation thinnings.

    Get PDF
    Identifying processing strategies and products that suit young plantation hardwoods has proved challenging with low product recoveries and/or unmarketable products being the outcome of many trials. The production of rotary veneer has been demonstrated as an effective method for converting plantation hardwood trees. Across nine processing studies that included six different plantation species (Dunn’s white gum, spotted gum, Gympie messmate, spotted gum hybrid, red mahogany and western white gum), simple spindleless lathe technology was used to process 914 veneer billets totally 37.4 m3

    Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment.

    Get PDF
    Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention

    Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor

    Get PDF
    We recently described a structurally novel series of negative allosteric modulators (NAMs) of the dopamine D2 receptor (D2R) based on thieno[2,3-d]pyrimidine 1, showing it can be structurally simplified to reveal low molecular weight, fragment-like NAMs that retain robust negative cooperativity, such as 3. Herein, we report the synthesis and functional profiling of analogues of 3, placing specific emphasis on examining secondary and tertiary amino substituents at the 4-position, combined with a range of substituents at the 5/6-positions (e.g. aromatic/aliphatic carbocycles). We identify analogues with diverse pharmacology at the D2R including NAMs (19fc) with sub-?M affinity (9h) and, surprisingly, low efficacy partial agonists (9d and 9i)

    A Statement on the Appropriate Role for Research and Development in Climate Policy

    Get PDF
    This statement is issued by a group of economists and scientists which met at Stanford University on October 18, 2008 to discuss the role of research and development (R&D) in developing effective policies for addressing the adverse potential consequences of climate change. We believe that climate change is a serious issue that governments need to address. We also believe that research and development needs to be a central part of governments’ strategies for responding to this challenge. Solutions to manage long-term risks will require the development and global deployment of a range of technologies for energy supply and end-use, land-use, agriculture and adaptation that are not currently commercial. A key potential benefit of focused scientific and technological research and development investment is that it could dramatically reduce the cost of restricting greenhouse gas emissions by encouraging the development of more affordable, better performing technologies.
    corecore