594 research outputs found

    The Deep X-ray Radio Blazar Survey (DXRBS). II. New Identifications

    Get PDF
    We have searched the archived, pointed ROSAT Position Sensitive Proportional Counter data for blazars by correlating the WGACAT X-ray database with several publicly available radio catalogs, restricting our candidate list to serendipitous X-ray sources with a flat radio spectrum (alpha_r <= 0.70). This makes up the Deep X-ray Radio Blazar Survey (DXRBS). Here we present new identifications and spectra for 106 sources, including 86 radio-loud quasars, 11 BL Lacertae objects, and 9 narrow-line radio galaxies. Together with our previously published objects and already known sources, our sample now contains 298 identified objects: 234 radio-loud quasars (181 flat-spectrum quasars: FSRQ [alpha_r <= 0.50] and 53 steep-spectrum quasars: SSRQ), 36 BL Lacs, and 28 narrow-line radio galaxies. Redshift information is available for 96% of these. Thus our selection technique is ~ 90% efficient at finding radio-loud quasars and BL Lacs. Reaching 5 GHz radio fluxes ~ 50 mJy and 0.1-2.0 keV X-ray fluxes a few x 10^-14 erg/cm^2/s, DXRBS is the faintest and largest flat-spectrum radio sample with nearly complete (~ 85%) identification. We review the properties of the DXRBS blazar sample, including redshift distribution and coverage of the X-ray-radio power plane for quasars and BL Lacs. Additionally, we touch upon the expanded multiwavelength view of blazars provided by DXRBS. By sampling for the first time the faint end of the radio and X-ray luminosity functions, this sample will allow us to investigate the blazar phenomenon and the validity of unified schemes down to relatively low powers.Comment: 33 pages, 5 figures. Accepted for publication in MNRAS. Postscript file also available at http://www.stsci.edu/~padovani/survey.htm

    What Types of Jets does Nature Make: A New Population of Radio Quasars

    Get PDF
    We use statistical results from a large sample of about 500 blazars, based on two surveys, the Deep X-ray Radio Blazar Survey (DXRBS), nearly complete, and the RASS-Green Bank survey (RGB), to provide new constraints on the spectral energy distribution of blazars, particularly flat-spectrum radio quasars (FSRQ). This reassessment is prompted by the discovery of a population of FSRQ with spectral energy distribution similar to that of high-energy peaked BL Lacs. The fraction of these sources is sample dependent, being ~ 10% in DXRBS and ~ 30% in RGB (and reaching ~ 80% for the Einstein Medium Sensitivity Survey). We show that these ``X-ray strong'' radio quasars, which had gone undetected or unnoticed in previous surveys, indeed are the strong-lined counterparts of high-energy peaked BL Lacs and have synchrotron peak frequencies, nu_peak, much higher than ``classical'' FSRQ, typically in the UV band for DXRBS. Some of these objects may be 100 GeV - TeV emitters, as are several known BL Lacs with similar broadband spectra. Our large, deep, and homogeneous DXRBS sample does not show anti-correlations between nu_peak and radio, broad line region, or jet power, as expected in the so-called ``blazar sequence'' scenario. However, the fact that FSRQ do not reach X-ray-to-radio flux ratios and nu_peak values as extreme as BL Lacs and the elusiveness of high nu_peak - high-power blazars suggest that there might be an intrinsic, physical limit to the synchrotron peak frequency that can be reached by strong-lined, powerful blazars. Our findings have important implications for the study of jet formation and physics and its relationship to other properties of active galactic nuclei.Comment: 15 pages, 12 figures. Accepted for publication in The Astrophysical Journal (May 1 2003 issue). Postscript file also available at http://www.stsci.edu/~padovani/unif_papers.htm

    The Sedentary Survey of Extreme High Energy Peaked BL Lacs III. Results from Optical Spectroscopy

    Full text link
    The multi-frequency Sedentary Survey is a flux limited, statistically well-defined sample of highly X-ray dominated BL Lacertae objects (HBLs) which includes 150 sources. In this paper, the third of the series, we report the results of a dedicated optical spectroscopy campaign that, together with results from other independent optical follow up programs, led to the spectroscopic identification of all sources in the sample. We carried out a systematic spectroscopic campaign for the observation of all unidentified objects of the sample using the ESO 3.6m, the KPNO 4m, and the TNG optical telescopes. We present new identifications and optical spectra for 76 sources, 50 of which are new BL Lac objects, 18 are sources previously referred as BL Lacs but for which no redshift information was available, and 8 are broad emission lines AGNs. We find that the multi-frequency selection technique used to build the survey is highly efficient (about 90%) in selecting BL Lacs objects. We present positional and spectroscopic information for all confirmed BL Lac objects. Our data allowed us to determined 36 redshifts out of the 50 new BL Lacs and 5 new redshifts for the previously known objects. The redshift distribution of the complete sample is presented and compared with that of other BL Lacs samples. For 26 sources without recognizable absorption features, we calculated lower limits to the redshift using a method based on simulated optical spectra with different ratios between jet and galaxy emission. For a subsample of 38 object with high-quality spectra, we find a correlation between the optical spectral slope, the 1.4 GHz radio luminosity, and the Ca H&K break value, indicating that for powerful/beamed sources the optical light is dominated by the non-thermal emission from the jet.Comment: 23 pages, accepted by A&

    Optical variability of the strong-lined and X-ray bright source 1WGA J0447.9-0322

    Get PDF
    We present the historic light curve of 1WGA J0447.9-0322, spanning the time interval from 1962 to 1991, built using the Asiago archive plates. The source shows small fluctuations of about 0.3 mag around B=16 until 1986 and a fast dimming of its average level by about 0.5 mag after that date, again with small short term variations. The variability pattern is within the values shown by other QSOs with long term monitoring, notwithstanding its high X-ray/optical ratio. We present also its overall SED using literature data and recent UV-optical SWIFT observations.Comment: 17 pages, 4 figures, accepted by The Astronomical Journal. Table 2 available upon reques

    The classification of BL Lacertae objects: the Ca H&K break

    Full text link
    We investigate why BL Lacertae objects (BL Lacs) have values of the Ca H&K break (a stellar absorption feature) lower than low-power radio galaxies and if its use is justified to separate the two classes. For this purpose we relate this parameter to the radio and optical core emissions, as well as to the X-ray powers, for a sample of ~90 radio sources. We find that the Ca H&K break value decreases with increasing jet powers, and that it also anti-correlates with the radio core dominance parameter but not with extended radio emission. Based on this we conclude that the Ca H&K break value of BL Lacs and radio galaxies is a suitable indicator of orientation. From the luminosity ratios between objects with low and high Ca H&K break values we constrain the average Lorentz factors for BL Lacs and low-power radio galaxies in the radio and X-ray band to Gamma ~ 2 -- 4 and derive average viewing angles for the galaxies. Our values are in agreement with results from independent methods. We find that the correlations between Ca H&K break and radio core and X-ray luminosity hold independently for low- (LBL) and high-energy peaked BL Lacs (HBL). We derive average viewing angles for their parent populations, which turn out to be similar to the ones for our entire sample, and compare for the first time the luminosities of LBL and HBL at different orientations.Comment: 14 pages, 12 figures. Accepted for publication in MNRA

    EVN & MERLIN studies of a new sample of BL Lac objects

    Get PDF
    The recent Deep X-ray Radio Blazar Survey (DXRBS) has identified a sample of BL Lac objects spanning the intermediate range of spectral energy distributions between “classical” X-ray selected and radio-selected samples of BL Lacs. Detailed studies of such samples are needed to answer some of the currently open questions regarding the nature of BL Lacs and their place in a unified model of AGN. High-resolution radio imaging provides direct information on jet evolution and beaming parameters. We present some preliminary results from EVN & MERLIN observations of sources in the DXRBS BL Lac sample for which little or no high-resolution radio data were previously available

    The Blazar Sequence: Validity and Predictions

    Get PDF
    The "blazar sequence" posits that the most powerful BL Lacertae objects and flat-spectrum radio quasars should have relatively small synchrotron peak frequencies, nu_peak, and that the least powerful such objects should have the highest nu_peak values. This would have strong implications for our understanding of jet formation and physics and the possible detection of powerful, moderately high-redshift TeV blazars. I review the validity of the blazar sequence by using the results of very recent surveys and compare its detailed predictions against observational data. I find that the blazar sequence in its simplest form is ruled out. However, powerful flat-spectrum radio quasars appear not to reach the nu_peak typical of BL Lacs. This could indeed be related to some sort of sequence, although it cannot be excluded that it is instead due to a selection effect.Comment: 9 pages, 4 figures, invited talk at the Workshop "The Multi-messenger approach to high energy gamma-ray sources", Barcelona, Spain, July 4-7, 2006, to appear in the proceeding

    A Flare in the Jet of Pictor A

    Get PDF
    A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wide, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter
    corecore