314 research outputs found

    Lack of Methyl-CpG Binding Protein 2 (MeCP2) Affects Cell Fate Refinement During Embryonic Cortical Development

    Get PDF
    During differentiation, neurons progressively restrict their fate repressing the expression of specific genes. Here we describe the involvement in such developmental steps of the methyl-CpG binding protein 2 (MeCP2), an epigenetic factor that participates to chromatin folding and transcriptional regulation. We previously reported that, due to transcriptional impairments, the maturation of Mecp2 null neurons is delayed. To evaluate whether this could stem from altered progenitors proliferation and differentiation, we investigated whether lack of Mecp2 affects these features both in vitro and in vivo. We show that in Mecp2 null embryonic cortexes the expression of genes defining the identity of proliferating neuroprogenitors is enriched and that their permanence in the G1 phase is prolonged. Moreover, the number of cells transitioning from a stage of maturation to a more mature one is increased in Mecp2 null embryonic cortices, in line with the central role of G1 for cell identity refinement. We thus suggest that, possibly due to the lack of proper transcriptional control normally exerted by Mecp2, fate refinement is impaired in developing null cells. We propose that the maturation delay affecting the developing Mecp2 null cortex originates, at least in part, from deranged mechanisms of cell fate refinement

    In vivo magnetic resonance spectroscopy in the brain of Cdkl5 null mice reveals a metabolic profile indicative of mitochondrial dysfunctions

    Get PDF
    Mutations in the X‐linked CDKL5 gene cause CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition mainly characterized by infantile epileptic encephalopathy, intellectual disability, and autistic features. The molecular mechanisms underlying the clinical symptoms remain largely unknown and the identification of reliable biomarkers in animal models will certainly contribute to increase our comprehension of CDD as well as to assess the efficacy of therapeutic strategies. Here, we used different Magnetic Resonance (MR) methods to disclose structural, functional, or metabolic signatures of Cdkl5 deficiency in the brain of adult mice. We found that loss of Cdkl5 does not cause cerebral atrophy but affects distinct brain areas, particularly the hippocampus. By in vivo proton‐MR spectroscopy (MRS), we revealed in the Cdkl5 null brain a metabolic dysregulation indicative of mitochondrial dysfunctions. Accordingly, we unveiled a significant reduction in ATP levels and a decrease in the expression of complex IV of mitochondrial electron transport chain. Conversely, the number of mitochondria appeared preserved. Importantly, we reported a significant defect in the activation of one of the major regulators of cellular energy balance, the adenosine monophosphate‐activated protein kinase (AMPK), that might contribute to the observed metabolic impairment and become an interesting therapeutic target for future preclinical trials. In conclusion, MRS revealed in the Cdkl5 null brain the presence of a metabolic dysregulation suggestive of a mitochondrial dysfunction that permitted to foster our comprehension of Cdkl5 deficiency and brought our interest towards targeting mitochondria as therapeutic strategy for CDD

    Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity

    Get PDF
    MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2

    A two-year participatory intervention project with owners to reduce lameness and limb abnormalities in working horses in Jaipur, India

    Get PDF
    Participatory methods are increasingly used in international human development, but scientific evaluation of their efficacy versus a control group is rare. Working horses support families in impoverished communities. Lameness and limb abnormalities are highly prevalent in these animals and a cause for welfare concern. We aimed to stimulate and evaluate improvements in lameness and limb abnormalities in horses whose owners took part in a 2-year participatory intervention project to reduce lameness (PI) versus a control group (C) in Jaipur, India.In total, 439 owners of 862 horses participated in the study. PI group owners from 21 communities were encouraged to meet regularly to discuss management and work practices influencing lameness and poor welfare and to track their own progress in improving these. Lameness examinations (41 parameters) were conducted at the start of the study (Baseline), and after 1 year and 2 years. Results were compared with control horses from a further 21 communities outside the intervention. Of the 149 horses assessed on all three occasions, PI horses showed significantly (P<0.05) greater improvement than C horses in 20 parameters, most notably overall lameness score, measures of sole pain and range of movement on limb flexion. Control horses showed slight but significantly greater improvements in four parameters, including frog quality in fore and hindlimbs.This participatory intervention succeeded in improving lameness and some limb abnormalities in working horses, by encouraging changes in management and work practices which were feasible within owners’ socioeconomic and environmental constraints. Demonstration of the potentially sustainable improvements achieved here should encourage further development of participatory intervention approaches to benefit humans and animals in other contexts

    Diamond deposition on modified silicon substrates: Making diamond atomic force microscopy tips for nanofriction experiments

    Get PDF
    Fine-crystalline diamond particles are grown on standard Si atomic force microscopy tips, using hot filament-assisted chemical vapor deposition. To optimize the conditions for diamond deposition, first a series of experiments is carried out using silicon substrates covered by point-topped pyramids as obtained by wet chemical etching. The apexes and the edges of the silicon pyramids provide favorable sites for diamond nucleation and growth. The investigation of the deposited polycrystallites is done by means of optical microscopy, scanning electron microscopy and micro-Raman spectroscopy. The resulting diamond-terminated tips are tested in ultra high vacuum using contact-mode atomic force microscope on a stepped surface of sapphire showing high stability, sharpness, and hardnes

    Multidimensional screening in a monopolistic insurance market

    Get PDF
    Support from the Government of Catalonia project 2005SGR00836 and the Barcelona GSE Research Network, as well as from the Ministerio de Educación y Ciencia, project ECO2009-07616 and CONSOLIDER-INGENIO 2010(CSD2006-0016)We consider a population of individuals who differ in two dimensions, their risk type (expected loss) and their risk aversion, and solve for the profit-maximising menu of contracts that a monopolistic insurer puts out on the market. Our findings are threefold. First, it is never optimal to fully separate all the types. Second, if heterogeneity in risk aversion is sufficiently high, then some high-risk individuals (the risk-tolerant ones) will obtain lower coverage than some low-risk individuals (the risk-averse ones). Third, because women tend to be more risk averse than men (in that the risk aversion distribution for women first-order stochastically dominates that for men), gender discrimination may lead to a Pareto improvement

    In Vivo Analysis of MEF2 Transcription Factors in Synapse Regulation and Neuronal Survival

    Get PDF
    MEF2 (A–D) transcription factors govern development, differentiation and maintenance of various cell types including neurons. The role of MEF2 isoforms in the brain has been studied using in vitro manipulations with only MEF2C examined in vivo. In order to understand specific as well as redundant roles of the MEF2 isoforms, we generated brain-specific deletion of MEF2A and found that Mef2aKO mice show normal behavior in a range of paradigms including learning and memory. We next generated Mef2a and Mef2d brain-specific double KO (Mef2a/dDKO) mice and observed deficits in motor coordination and enhanced hippocampal short-term synaptic plasticity, however there were no alterations in learning and memory, Schaffer collateral pathway long-term potentiation, or the number of dendritic spines. Since previous work has established a critical role for MEF2C in hippocampal plasticity, we generated a Mef2a, Mef2c and Mef2d brain-specific triple KO (Mef2a/c/dTKO). Mef2a/c/d TKO mice have early postnatal lethality with increased neuronal apoptosis, indicative of a redundant role for the MEF2 factors in neuronal survival. We examined synaptic plasticity in the intact neurons in the Mef2a/c/d TKO mice and found significant impairments in short-term synaptic plasticity suggesting that MEF2C is the major isoform involved in hippocampal synaptic function. Collectively, these data highlight the key in vivo role of MEF2C isoform in the brain and suggest that MEF2A and MEF2D have only subtle roles in regulating hippocampal synaptic function

    Adjuncts or adversaries to shared decision-making? Applying the Integrative Model of behavior to the role and design of decision support interventions in healthcare interactions

    Get PDF
    Background A growing body of literature documents the efficacy of decision support interventions (DESI) in helping patients make informed clinical decisions. DESIs are frequently described as an adjunct to shared decision-making between a patient and healthcare provider, however little is known about the effects of DESIs on patients' interactional behaviors-whether or not they promote the involvement of patients in decisions. Discussion Shared decision-making requires not only a cognitive understanding of the medical problem and deliberation about the potential options to address it, but also a number of communicative behaviors that the patient and physician need to engage in to reach the goal of making a shared decision. Theoretical models of behavior can guide both the identification of constructs that will predict the performance or non-performance of specific behaviors relevant to shared decision-making, as well as inform the development of interventions to promote these specific behaviors. We describe how Fishbein's Integrative Model (IM) of behavior can be applied to the development and evaluation of DESIs. There are several ways in which the IM could be used in research on the behavioral effects of DESIs. An investigator could measure the effects of an intervention on the central constructs of the IM - attitudes, normative pressure, self-efficacy, and intentions related to communication behaviors relevant to shared decision-making. However, if one were interested in the determinants of these domains, formative qualitative research would be necessary to elicit the salient beliefs underlying each of the central constructs. Formative research can help identify potential targets for a theory-based intervention to maximize the likelihood that it will influence the behavior of interest or to develop a more fine-grained understanding of intervention effects. Summary Behavioral theory can guide the development and evaluation of DESIs to increase the likelihood that these will prepare patients to play a more active role in the decision-making process. Self-reported behavioral measures can reduce the measurement burden for investigators and create a standardized method for examining and reporting the determinants of communication behaviors necessary for shared decision-making
    corecore