6,972 research outputs found
Intrauterine Undernourishment Alters TH1/TH2 Cytokine Balance and Attenuates Lung Allergic Inflammation in Wistar Rats
IL-4 produced by Th2 cells can block cytokine production by Th1 cells, and Th1 IFN-gamma is known to counterregulate Th2 immune response, inhibiting allergic eosinophilia. As intrauterine undernutrition can attenuate lung inflammation, we investigated the influence of intrauterine undernourishment on the Th1/Th2 cytokine balance and allergic lung inflammation. Intrauterine undernourished offspring were obtained from dams fed 50% of the nourished diet of their counterparts and were immunized at 9 weeks of age. We evaluated the cell counts and cytokine protein expression in the bronchoalveolar lavage, mucus production and collagen deposition, and cytokine gene expression and transcription factors in lung tissue 21 days after ovalbumin immunization. Intrauterine undernourishment significantly reduced inflammatory cell airway infiltration, mucus secretion and collagen deposition, in rats immunized and challenged. Intrauterine undernourished rats also exhibited an altered cytokine expression profile, including higher TNF-alpha and IL-1 beta expression and lower IL-6 expression than well-nourished rats following immunization and challenge. Furthermore, the intrauterine undernourished group showed reduced ratios of the IL-4/IFN-gamma and the transcription factors GATA-3/T-Bet after immunization and challenge. We suggest that the attenuated allergic lung inflammation observed in intrauterine undernourished rats is related to an altered Th1/Th2 cytokine balance resulting from a reduced GATA-3/T-bet ratio. Copyright (C) 2012 S. Karger AG, BaselConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundo de Auxilio aos Docentes e Alunos (FADA-UNIFESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, BR-09972270 São Paulo, BrazilUniv São Paulo, Inst Ciencias Biomed, Dept Imunol, Lab Imunol Transplantes, BR-05508 São Paulo, BrazilUniversidade Federal de São Paulo, Div Nefrol, Lab Imunol Clin & Expt, BR-09972270 São Paulo, BrazilUniv São Paulo, Inst Ciencias Biomed, Dept Farmacol, BR-05508 São Paulo, BrazilUniversidade Federal de São Paulo, Inst Ciencias Ambientais Quim & Farmaceut, BR-09972270 São Paulo, BrazilUniversidade Federal de São Paulo, Div Nefrol, Lab Imunol Clin & Expt, BR-09972270 São Paulo, BrazilFAPESP: 07/07139-3FAPESP: 09/09849-3FAPESP: 09/52119-6FAPESP: 10/01404-0FAPESP: 12/02270-2Web of Scienc
Beam Performance of Tracking Detectors with Industrially Produced GEM Foils
Three Gas-Electron-Multiplier tracking detectors with an active area of 10 cm
x 10 cm and a two-dimensional, laser-etched orthogonal strip readout have been
tested extensively in particle beams at the Meson Test Beam Facility at
Fermilab. These detectors used GEM foils produced by Tech-Etch, Inc. They
showed an efficiency in excess of 95% and spatial resolution better than 70 um.
The influence of the angle of incidence of particles on efficiency and spatial
resolution was studied in detail.Comment: 8 pages, 9 figures, accepted by Nuclear Instruments and Methods in
Physics Research
Prolactin
During an oral glucose tolerance test (OGTT) glucose and insulin levels were measured in 26 patients with prolactin-producing pituitary tumours without growth hormone excess. Basal glucose and insulin levels did not differ from the values of an age-matched control group. After glucose load the hyperprolactinaemic patients showed a decrease in glucose tolerance and a hyperinsulinaemia. Bromocriptine (CB 154), which suppressed PRL, improved glucose tolerance and decreased insulin towards normal in a second OGTT. — Human PRL or CB 154 had no significant influence on insulin release due to glucose in the perfused rat pancreas. — These findings suggest a diabetogenic effect of PRL. CB 154 might be a useful drug in improving glucose utilization in hormone-active pituitary tumours
Perspectives on Interstellar Dust Inside and Outside of the Heliosphere
Measurements by dust detectors on interplanetary spacecraft appear to
indicate a substantial flux of interstellar particles with masses exceeding
10^{-12}gram. The reported abundance of these massive grains cannot be typical
of interstellar gas: it is incompatible with both interstellar elemental
abundances and the observed extinction properties of the interstellar dust
population. We discuss the likelihood that the Solar System is by chance
located near an unusual concentration of massive grains and conclude that this
is unlikely, unless dynamical processes in the ISM are responsible for such
concentrations. Radiation pressure might conceivably drive large grains into
"magnetic valleys". If the influx direction of interstellar gas and dust is
varying on a ~10 yr timescale, as suggested by some observations, this would
have dramatic implications for the small-scale structure of the interstellar
medium.Comment: 13 pages. To appear in Space Science Review
- …
