8,509 research outputs found
Effects of somatostatin on calcitonin and ectopic ACTH release in a patient with medullary thyroid carcinoma
Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence
Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675–775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning
Stratospheric isotopic water profiles from a single submillimeter limb scan by TELIS
Around 490 GHz relatively strong HDO and H<sub>2</sub><sup>18</sup>O emission lines can be found in the submillimeter thermal-emission spectrum of the Earth's atmosphere, along with lines of the principal isotopologue of water vapour. These can be used for remote sensing of the rare/principal isotope ratio in the stratosphere. A sensitivity study has been performed for retrieval simulations of water isotopologues from balloon-borne measurements by the limb sounder TELIS (TErahertz and submillimeter LImb Sounder). The study demonstrates the capability of TELIS to determine, from a single limb scan, the profiles for H<sub>2</sub><sup>18</sup>O and HDO between 20 km and 37 km with a retrieval error of &asymp;3 and a spatial resolution of 1.5 km, as determined by the width of the averaging kernel. In addition HDO can be retrieved in the range of 10–20 km, albeit with a strongly deteriorated retrieval error. Expected uncertainties in instrumental parameters have only limited impact on the retrieval results
Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah
The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided
A modified band approach for the accurate calculation of online photolysis rates in stratospheric-tropospheric Chemical Transport Models
International audienceHere we present an efficient and accurate method for the online calculation of photolysis rates relevant to both the stratosphere and troposphere for use in global Chemistry Transport Models and General Circulation Models. The method is a modified version of the band model introduced by Landgraf and Crutzen (1998) which has been updated to improve the performance of the approach for solar zenith angles >72° without the use of any implicit parameterisations. For this purpose, additional sets of band parameters have been defined for instances where the incident angle of the light beam is between 72?93°, in conjunction with a scaling component for the far UV region of the spectrum (?=178.6?202.0 nm). For incident angles between 85?93° we introduce a modification for pseudo-sphericity that improves the accuracy of the 2-stream approximation. We show that this modified version of the Practical Improved Flux Method (PIFM) is accurate for angles <93° by comparing the resulting height resolved actinic fluxes with a recently developed full spherical reference model. We also show that the modified band method is more accurate than the original, with errors generally being less than ±10% throughout the atmospheric column for a diverse range of chemical species. Moreover, we perform certain sensitivity studies that indicate it is robust and performs well over a wide range of conditions relevant to the atmosphere
Irrigated acreage in the Bear River Basin as of the 1975 growing season
The irrigated cropland in the Bear River Basin as of the 1975 growing season was inventoried from satellite imagery. LANDSAT color infrared images (scale 1:125,000) were examined for early, mid, and late summer dates, and acreage was estimated by use of township/section overlays. The total basin acreage was estimated to be 573,435 acres, with individual state totals as follows: Idaho 234,370 acres; Utah 265,505 acres; and Wyoming 73,560 acres. As anticipated, wetland areas intermingled among cropland appears to have produced an over-estimation of irrigated acreage. According to a 2% random sample of test sites evaluated by personnel from the Soil Conservation Service such basin-wide over-estimation is 7.5%; individual counties deviate significantly from the basin-wide figure, depending on the relative amount of wetland areas intermingled with cropland
Prolactin
During an oral glucose tolerance test (OGTT) glucose and insulin levels were measured in 26 patients with prolactin-producing pituitary tumours without growth hormone excess. Basal glucose and insulin levels did not differ from the values of an age-matched control group. After glucose load the hyperprolactinaemic patients showed a decrease in glucose tolerance and a hyperinsulinaemia. Bromocriptine (CB 154), which suppressed PRL, improved glucose tolerance and decreased insulin towards normal in a second OGTT. — Human PRL or CB 154 had no significant influence on insulin release due to glucose in the perfused rat pancreas. — These findings suggest a diabetogenic effect of PRL. CB 154 might be a useful drug in improving glucose utilization in hormone-active pituitary tumours
I RAPPORTI ECONOMICO-FINANZIARI TRA ITALIA E REPUBBLICA DI SAN MARINO
Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light-dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues
- …
