2,078 research outputs found

    Georgia's Aging Population: What to Expect and How to Cope

    Get PDF
    This report analyzes the impacts of Georgia's aging population on state finances. FRC Report 11

    Freeform Extrusion of High Solids Loading Ceramic Slurries, Part I: Extrusion Process Modeling

    Get PDF
    A novel solid freeform fabrication method has been developed for the manufacture of ceramic-based components in an environmentally friendly fashion. The method is based on the extrusion of ceramic slurries using water as the binding media. Aluminum oxide (Al2O3) is currently being used as the part material and solids loading as high as 60 vol. % has been achieved. This paper describes a manufacturing machine that has been developed for the extrusion of high solids loading ceramic slurries. A critical component of the machine is the deposition system, which consists of a syringe, a plunger, a ram actuated by a motor that forces the plunger down to extrude material, and a load cell to measure the extrusion force. An empirical, dynamic model of the ceramic extrusion process, where the input is the commanded ram velocity and the output is the extrusion force, is developed. Several experiments are conducted and empirical modeling techniques are utilized to construct the dynamic model. The results demonstrate that the ceramic extrusion process has a very slow dynamic response, as compared to other non-compressible fluids such as water. A substantial amount of variation exists in the ceramic extrusion process, most notably in the transient dynamics, and a constant ram velocity may either produce a relatively constant steady-state extrusion force or it may cause the extrusion force to steadily increase until the ram motor skips. The ceramic extrusion process is also subjected to significant disturbances such as air bubble release, which causes a dramatic decrease in the extrusion force, and nozzle clogging, which causes the extrusion force to slowly increase until the clog is released or the ram motor skips.Mechanical Engineerin

    Freeform Extrusion of High Solids Loading Ceramic Slurries, Part II: Extrusion Process Control

    Get PDF
    Part I of this paper provided a detailed description of a novel fabrication machine for high solids loading ceramic slurry extrusion and presented an empirical model of the ceramic extrusion process, with ram velocity as the input and extrusion force as the output. A constant force is desirable in freeform extrusion processes as it correlates with a constant material deposition rate and, thus, good part quality. The experimental results in Part I demonstrated that a constant ram velocity will produce a transient extrusion force. In some instances the extrusion force increased until ram motor skipping occurred. Further, process disturbances, such as air bubble release and nozzle clogging that cause sudden changes in extrusion force, were often present. In this paper a feedback controller for the ceramic extrusion process is designed and experimentally implemented. The controller intelligently adjusts the ram motor velocity to maintain a constant extrusion force. Since there is tremendous variability in the extrusion process characteristics, an on-off controller is utilized in this paper. Comparisons are made between parts fabricated with and without the feedback control. It is demonstrated that the use of the feedback control reduces the effect of process disturbances (i.e., air bubble release and nozzle clogging) and dramatically improves part quality.Mechanical Engineerin

    Responses of Species in Kalsow Prairie, Iowa, to an April Fire

    Get PDF
    Selected prairie species were observed during the first growing season following a prescribed burn on Kalsow Prairie, a mesic tall grass prairie in central Iowa. Changes in dry weight, vegetative cover, and flowering response were measured on burned, unburned and mowed areas. Significant changes were recorded for many species following the burn ranging from a flowering response of prairie dropseed (Sporobolus heterolepis) on burned areas 30 times that on unburned areas to a slight reduction in flowering of bluegrass (Poa pratensis) on burned areas

    Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    Get PDF
    Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of the extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests are conducted to determine the optimal deposition parameters for starting and stopping the extrudate on demand. The collected test data is used for the development of a deposition strategy that improves material deposition consistency, including reduced material buildup at sharp corners. Example parts are fabricated using the deposition strategy and hardware design.Mechanical Engineerin

    Report of Data Analyses to the Georgia Commission on the Efficacy of the CON Program

    Get PDF
    A highlight of presentations and discussions during the Philanthropic Symposium on School Health held October 16, 2000 in Atlanta, GA.Community and Public Healt

    Hierarchical Optimal Force-Position Control of a Turning Process

    Get PDF
    Machining process control technologies are currently not well integrated into machine tool controllers and, thus, servomechanism dynamics are often ignored when designing and implementing process controllers. In this brief, a hierarchical controller is developed that simultaneously regulates the servomechanism motions and cutting forces in a turning operation. The force process and servomechanism system are separated into high and low levels, respectively, in the hierarchy. The high-level goal is to maintain a constant cutting force to maximize productivity while not violating a spindle power constraint. This goal is systematically propagated to the lower level and combined with the low-level goal to track the reference position. Since the only control signal (i.e., motor voltage) resides at the lower level, a single controller is designed at the bottom level that simultaneously meets both the high- and low-level goals. Simulations are conducted that validate the developed methodology. The results illustrate that the controller can simultaneously achieve the low-level position tracking goal and the high-level force-tracking goal

    Hierarchical Optimal Force-Position-Contour Control of Machining Processes. Part II. Illustrative Example

    Get PDF
    There has been a tremendous amount of research in machine tool servomechanism control, contour control, and machining force control; however, to date these technologies have not been tightly integrated. This paper develops a hierarchical optimal control methodology for the simultaneous regulation of servomechanism positions, contour error, and machining forces. The contour error and machining force process reside in the top level of the hierarchy where the goals are to 1) drive the contour error to zero to maximize quality and 2) maintain a constant cutting force to maximize productivity. These goals are systematically propagated to the bottom level, via aggregation relationships between the top and bottom-level states, and combined with the bottom-level goals of tracking reference servomechanism positions. A single controller is designed at the bottom level, where the physical control signals reside, that simultaneously meets both the top and bottom-level goals. The hierarchical optimal control methodology is extended to account for variations in force process model parameters and process parameters. Simulations are conducted for four machining operations that validate the developed methodology. The results illustrate that the controller can simultaneously achieve both the top and bottom-level goals
    • …
    corecore