12 research outputs found

    The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Get PDF
    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis

    Ribavirin-Induced Anemia in Hepatitis C Virus Patients Undergoing Combination Therapy

    Get PDF
    The current standard of care for hepatitis C virus (HCV) infection – combination therapy with pegylated interferon and ribavirin – elicits sustained responses in only ∼50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects

    Cyclin-dependent kinase 4/6 inhibitors as first-line treatment for post-menopausal metastatic hormone receptor-positive breast cancer patients: a systematic review and meta-analysis of phase III randomized clinical trials.

    No full text
    Background To compare the efficacy and toxicity of the combination of cyclin-dependent kinase 4/6 (CDK 4/6) inhibitors and nonsteroidal aromatase inhibitors (AI) versus AI alone as first-line therapy for patients with advanced hormone receptor-positive breast cancer. Materials and methods Phase III randomized clinical trials (RCT) were identified after a systematic review of electronic databases. A random-effect model was used to determine the pooled hazard ratio (HR) for progression-free survival (PFS) using the inverse-variance method. The Mantel–Haenszel method was used to calculate the pooled odds ratio (OR) for overall response, clinical benefit rate and treatment-related side effects. Heterogeneity was measured using the tau-squared and I2 statistics. Results After a systematic search, three phase III RCT (n = 1827) were included. The use of CDK 4/6 inhibitors (abemaciclib, palbociclib, and ribociclib) in combination with an AI was significantly associated with longer PFS compared to the use of letrozole or anastrozole alone (HR: 0.57; 95% CI 0.50–0.65; p < 0.00001), with no significant heterogeneity among trials. Similarly, overall response rate and clinical benefit rate were higher for patients who received the combination therapy than for patients allocated to AI alone. Grade 3 or higher treatment-related side effects were more frequently reported for patients who received CDK 4/6 inhibitors (OR: 7.51; 95% CI 6.01–9.38; p < 0.00001), these included mainly neutropenia, leukopenia and anemia. Conclusion The addition of CDK 4/6 inhibitors (either abemaciclib, palbociclib, or ribociclib) to an AI (anastrozole or letrozole) significantly improved PFS, overall response rate, and clinical benefit rate in comparison with a nonsteroidal AI alone.UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin
    corecore