49 research outputs found

    “Estudio de la formación de pirrolo[2,1-a]3,4- dihidroisoquinolinas a través del uso de energía alternativa de radiación de microondas, partiendo de la síntesis de chalconas intermediarias”

    Get PDF
    En el presente trabajo de investigación se describe la síntesis de derivados de pirrolo[2,1- a]isoquinolinas. La parte medular de este proceso de síntesis involucra reacciones de acoplamiento C-C tipo Heck, a través de procesos de catálisis mediadas con radiación de microondas. La síntesis inició con la reacción de condensación aldólica entre un aldehído aromático y derivados de acetofenona, produciendo los correspondientes compuestos carbonílicos α,β-insaturados también conocidos como chalconas. En el segundo paso de la ruta de síntesis, las chalconas se transformaron a los correspondientes derivados heterocíclicos de pirrol utilizando la metodología de van Leussen. En el tercer paso se llevó a cabo la Nalquilación del pirrol utilizando como agente alquilante al 4-metilbencensulfonato (22) producto obtenido a partir de la reacción de sulfonación del 2-bromofenetilo, para de esa manera generar la estructura adecuada en los derivados alquilados. Finalmente, la última etapa de la ruta de síntesis involucró la reacción intermolecular de Heck para llevar a cabo la ciclación de los derivados alquilados de pirrol, en presencia de sales de paladio y radiación de microondas, obteniendo buenos rendimientos del producto final (dihidroisoquinolina). Todos los compuestos de la ruta de síntesis fueron identificados utilizando la espectroscopia de Resonancia Magnética Nuclear de hidrógeno (RMN 1H) y de carbono- 13 (RMN 13C) como la herramienta principal de elucidación estructural además de Espectroscopia de Infrarrojo (IR)

    Behavior of early warnings near the critical temperature in the two-dimensional Ising model

    Full text link
    Among the properties that are common to complex systems, the presence of critical thresholds in the dynamics of the system is one of the most important. Recently, there has been interest in the universalities that occur in the behavior of systems near critical points. These universal properties make it possible to estimate how far a system is from a critical threshold. Several early-warning signals have been reported in time series representing systems near catastrophic shifts. The proper understanding of these early-warnings may allow the prediction and perhaps control of these dramatic shifts in a wide variety of systems. In this paper we analyze this universal behavior for a system that is a paradigm of phase transitions, the Ising model. We study the behavior of the early-warning signals and the way the temporal correlations of the system increase when the system is near the critical point.Comment: 20 pages, 8 figures, Submitted to PLOS ONE on Oct. 20th 2014. PONE-D-14-4718

    Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites

    Get PDF
    Incorporation of carbon nanotubes into epoxy resin composites has the effect of increasing electrical conductivity at low percolation levels. An amphiphilic molecule such as palmitic acid has been used to increase the surface contact area and improve the dispersion of the carbon nanotube bundles in the prepolymer. The chemical environment of the dispersed nanotubes has been probed using vibrational Raman spectroscopy. Spectroscopic Raman maps, on sample surfaces (60x60 µm2) with ratios of nanotubes to palmitic acid varying from 1:2 to 2:1 by weight, have been recorded to test the uniformity of the dispersion. Substantial spatial inhomogeneities have been observed in the G-band shift and an additional spectral band at 1450 cm-1. The 1450 cm-1 band has been attributed to the CH3 group of the amphiphilic molecules adsorbed onto the nanotube surface. The maps are correlated with the measured electrical conductivity values. The highest conductivity has been observed for the best dispersed nanotubes and nanotubes with the highest degree of interaction

    Análisis espacial de la Zanja de Alsina en la Provincia de La Pampa, Argentina (1876-1879). Un abordaje interdisciplinario entre la Arqueología y la Geografía

    Get PDF
    “Zanja de Alsina” (Alsina´s trench) (1876-1879) was a milestone in the border dynamics with the autonomous indigenous groups of Pampa and Patagonia. Its establishment was the initial action that led to the transformation of the frontier world into a rural one, integrated with global capitalist dynamics. This trench - 3 m wide x 2 m depth - was conceived and projected from the Ministry of War and Marine Affairs established in Buenos Aires). The trench was planned to have an ideal extension of 600 km but only 400 km were made. In this paper, and from an interdisciplinary approach, we will present the first results of the analyses carried out through satellite images, historical cartography and information provided by an archaeological work in order to locate the aforementioned trench as well as the adjacent military settlements (Machado, Alsina and Alvear - located in the northeastern part of the Pampas).La Zanja de Alsina (1876-1879) fue un hito en la dinámica de frontera con las parcialidades indígenas autónomas de Pampa y Patagonia. Su establecimiento constituyó el puntapié inicial que dio lugar a la transformación del mundo fronterizo hacia uno rural plenamente integrado a la dinámica capitalista global. Dicha zanja -de3 mde boca por 2 de profundidad-fue concebida y proyectada desde el Ministerio de Guerra y Marina (cito en Buenos Aires, Argentina), contando con una extensión ideal de600 kmy real de400 km. En este trabajo, desde un enfoque interdisciplinario, presentaremos los primeros resultados de los análisis espaciales llevados a cabo sobre imágenes satelitales, cartografía histórica y otras fuentes documentales e información provista por la labor arqueológica con el objetivo de poder localizar la mencionada zanja así como también los asentamientos militares adyacentes (Machado, Alsina y Alvear) - ubicados en el actual noreste del territorio pampeano

    Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites

    Get PDF
    Abstract Incorporation of carbon nanotubes into epoxy resin composites has the effect of increasing electrical conductivity at low percolation levels. An amphiphilic molecule such as palmitic acid has been used to increase the surface contact area and improve the dispersion of the carbon nanotube bundles in the prepolymer. The chemical environment of the dispersed nanotubes has been probed using vibrational Raman spectroscopy. Spectroscopic Raman maps, on sample surfaces (60x60 µm 2 ) with ratios of nanotubes to palmitic acid varying from 1:2 to 2:1 by weight, have been recorded to test the uniformity of the dispersion. Substantial spatial inhomogeneities have been observed in the G-band shift and an additional spectral band at 1450 cm -1 . The 1450 cm -1 band has been attributed to the CH 3 group of the amphiphilic molecules adsorbed onto the nanotube surface. The maps are correlated with the measured electrical conductivity values. The highest conductivity has been observed for the best dispersed nanotubes and nanotubes with the highest degree of interaction

    A large sub-Neptune transiting the thick-disk M4 V TOI-2406

    Get PDF
    We thank the anonymous referee for their corrections and help in improving the paper. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, B. Garcia, G. Guisa, A. Franco, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, J. M. Nunez, J. L. Ochoa, M. Pereyra, F. Quiroz, T. Verdugo, I. Zavala. B.V.R. thanks the Heising-Simons Foundation for support. Y.G.M.C acknowledges support from UNAM-PAPIIT IG-101321. B.-O. D. acknowledges support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). R.B. acknowledges the support from the Swiss National Science Foundation under grant P2BEP2_195285. M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow. A.H.M.J.T acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nffi 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1). T.D. acknowledges support from MIT's Kavli Institute as a Kavli postdoctoral fellow Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to MT. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Funding for the TESS mission is provided by NASA's Science Mission Directorate. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). We thank the TESS GI program G03274 PI, Ryan Cloutier, for proposing the target of this work for 2-min-cadence observations in Sector 30. This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This work includes data collected at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham. This paper includes data taken on the EDEN telescope network. We acknowledge support from the Earths in Other Solar Systems Project (EOS) and Alien Earths (grant numbers NNX15AD94G and 80NSSC21K0593), sponsored by NASA. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro (Gemini program GS-2020B-LP-105). Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini South telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work made use of the following Python packages: astropy (Astropy Collaboration 2013, 2018), lightkurve (Lightkurve Collaboration 2018), matplotlib (Hunter 2007), pandas (Wes McKinney 2010), seaborn (Waskom & The Seaborn Development team 2021), scipy (Virtanen et al. 2020) and numpy (Harris et al. 2020).Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Aims. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. The star's low metallicity and the relatively large size and short period of the planet make TOI-2406 b an unusual outcome of planet formation, and its characterisation provides an important observational constraint for formation models. Methods. We first infer properties of the host star by analysing the star's near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. Results. We determine the host to be a metal-poor M4 V star, located at a distance of 56 pc, with properties T-eff = 3100 +/- 75 K, M-* = 0.162 +/- 0.008M(circle dot), R-* = 0.202 +/- 0.011R(circle dot), and [Fe/H] = -0.38 +/- 0.07, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with R-p = 2.94 +/- 0.17R(circle plus) and P= 3.077 d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3 sigma, prompting questions about the dynamical history of the system. Conclusions. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy. Although the planet's mass remains to be constrained, we estimate the S/N using amass-radius relationship, ranking the system fifth in the population of large sub-Neptunes, with TOI-2406 b having a much lower equilibrium temperature than other spectroscopically accessible members of this population.Heising-Simons FoundationPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT)Universidad Nacional Autonoma de Mexico IG-101321Swiss National Science Foundation (SNSF)European Commission PP00P2-163967 PP00P2-190080 P2BEP2_195285MIT's Kavli Institute as a Juan Carlos Torres FellowEuropean Research Council (ERC) nffi 803193/BEBOPMERAC foundationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) nffi ST/S00193X/1MIT's Kavli Institute as a Kavli postdoctoral fellowSwiss National Science Foundation (SNSF)Australian Research CouncilFonds de la Recherche Scientifique - FNRS FRFC 2.5.594.09.FSwiss National Science Foundation (SNSF)French Community of Belgium in the context of the FRIA Doctoral GrantNASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research CenterNASA's Science Mission DirectorateNational Aeronautics and Space Administration under the Exoplanet Exploration ProgramTESS GI program G03274National Science Foundation (NSF)Earths in Other Solar Systems Project (EOS)Alien Earths - NASA NNX15AD94G 80NSSC21K0593High-Resolution Imaging instrument Zorro (Gemini program) GS-2020B-LP-105NASA Exoplanet Exploration ProgramNational Aeronautics & Space Administration (NASA)National Science Foundation (NSF

    Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms.

    No full text
    Recently it has been shown that building networks from time series allows to study complex systems to characterize them when they go through a phase transition. This give us the opportunity to study this systems from a entire new point of view. In the present work we have used the natural and horizontal visualization algorithms to built networks of two popular models, which present phase transitions: the Ising model and the Kuramoto model. By measuring some topological quantities as the average degree, or the clustering coefficient, it was found that the networks retain the capability of detecting the phase transition of the system. From our results it is possible to establish that both visibility algorithms are capable of detecting the critical control parameter, as in every quantity analyzed (the average degree, the average path and the clustering coefficient) there is a minimum or a maximum value. In the case of the natural visualization algorithm, the average path results are much more noisy than in the other quantities in the study. Specially for the Kuramoto Model, which in this case does not allow a detection of the critical point at plain sight as for the other quantities. The horizontal visualization algorithm has proven to be more explicit in every quantity, as every one of them show a clear change of behavior before and after the critical point of the transition

    Elevar la calidad del servicio en Gante café a través del estudio del proceso de mejora continua

    No full text
    Tesis (Licenciatura en Turismo), Instituto Politécnico Nacional, EST, 2010, 1 archivo PDF, (118 páginas). tesis.ipn.m

    El ABC de las personas físicas en materia fiscal

    No full text
    SEMINARIO: ENTORNO FISCAL DE LAS CONTRIBUCIONES LOCALES DEL DISTRITO FEDERA

    Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes.

    No full text
    Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart
    corecore