1,701 research outputs found

    On the Mass of Dense Star Clusters in Starburst Galaxies from Spectro-Photometry

    Full text link
    The mass of unresolved young star clusters derived from spectro-photometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar IMF, the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter eta. When we compute eta for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cutoff mass of 25.5 solar mass. We also monitor the rise of color gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the LMC cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate (SFR) derived for the cluster population is then underestimated by from 20 to 50 per cent.Comment: 20 pages, 16 figures, accepted for publication in MNRA

    New Near-Infrared Spectroscopy of the High Redshift Quasar B 1422+231 at z=3.62

    Full text link
    We present new near-infrared (rest-frame UV-to-optical) spectra of the high redshift, gravitationally lensed quasar B 1422+231 (z=3.62). Diagnostic emission lines of FeII, [OIII]5007, and Hb, commonly used to determine the excitation, ionization, and chemical abundances of radio-quiet and radio-loud quasars, were detected. Our new data show that the ratio FeII(UV)/Hb=18.1+-4.6 and FeII(optical)/Hb=2.3+-0.6 are higher than those reported by Kawara et al. (1996) by factors of 1.6 and 3.3, respectively, although the ration [OIII]5007/Hb=0.19+-0.02 is nearly the same between the two measurements. The discrepancy of the line flux ratios between the measurements is likely due to improved data and fitting procedures rather that to intrinsic variability. While approximately half of the high-z quasars observed to date have much more extreme FeII(optical)/Hb ratios, the line ratio measured for B 422+231 are consistent with the observed range of FeII(optical) ratios of low-z quasars.Comment: 5 pages, 1 table, 4 figures. To appear in The Astronomical Journa

    Dynamical Mass Estimates for Five Young Massive Stellar Clusters

    Full text link
    We have obtained high-dispersion spectra for four massive star clusters in the dwarf irregular galaxies NGC 4214 and NGC 4449, using the HIRES spectrograph on the Keck I telescope. Combining the velocity dispersions of the clusters with structural parameters and photometry from images taken with HST, we estimate mass-to-light ratios and compare these with simple stellar population (SSP) models in order to constrain the stellar mass functions (MFs). For all clusters we find mass-to-light ratios which are similar to or slightly higher than for a Kroupa MF, and thereby rule out any MF which is deficient in low-mass stars compared to a Kroupa-type MF. The four clusters have virial masses ranging between 2.1E5 Msun and 1.5E6 Msun, half-light radii between 3.0 and 5.2 pc, estimated core densities in the range 2E3 Msun pc^-3 to 2E5 Msun pc^-3 and ages between 200 Myr and 800 Myr. We also present new high-dispersion near-infrared spectroscopy for a luminous young (about 15 Myr) cluster in the nearby spiral galaxy NGC 6946, which we have previously observed with HIRES. The new measurements in the infrared agree well with previous estimates of the velocity dispersion, yielding a mass of about 1.7E6 Msun. The properties of the clusters studied here are all consistent with the clusters being young versions of the old globular clusters found around all major galaxies.Comment: 30 pages, including 7 figures and 9 tables. Corrected an error in Table 2: The colors listed for N6946-1447 were not reddening corrected. This also affected Table 9 and Fig 2, 6 and

    The Dusty Starburst Nucleus of M33

    Get PDF
    We have thoroughly characterized the ultraviolet to near-infrared (0.15 - 2.2 micron) spectral energy distribution (SED) of the central parsec of the M33 nucleus through new infrared photometry and optical/near-infrared spectroscopy, combined with ultraviolet/optical observations from the literature and the HST archive. The SED shows evidence for a significant level of attenuation, which we model through a Monte Carlo radiative transfer code as a shell of clumpy Milky Way-type dust (tau_V ~ 2 +/- 1). The discovery of Milky Way-type dust (with a strong 2175 A bump) internal to the M33 nucleus is different from previous work which has found SMC-like dust (no bump) near starburst regions. The amount by which dust can be processed may be related to the mass and age of the starburst as well as the extent to which the dust can shield itself. Our starburst models include the effects of this dust and can fit the SED if the nucleus was the site of a moderate (~10^8 L_sun at 10 Myrs) episode of coeval star formation about 70 Myrs ago. This result is quite different from previous studies which resorted to multiple stellar populations (between 2 and 7) attenuated by either no or very little internal dust. The M33 nuclear starburst is remarkably similar to an older version (70 Myr versus 10 Myr) of the ultra-compact starburst in the center of the Milky Way.Comment: 29 pages, 9 embedded figures, ApJ, in pres

    Hyperspectral imaging to characterize table grapes

    Get PDF
    Table grape quality is of importance for consumers and thus for producers. Its objective quality is usually determined by destructive methods mainly based on sugar content. This study proposed to evaluate the possibility of hyperspectral imaging to characterize table grapes quality through its sugar (TSS), total flavonoid (TF), and total anthocyanin (TA) contents. Different data pretreatments (WD, SNV, and 1st and 2nd derivative) and different methods were tested to get the best prediction models: PLS with full spectra and then Multiple Linear Regression (MLR) were realized after selecting the optimal wavelengths thanks to the regression coefficients (coefficients) and the Variable Importance in Projection (VIP) scores. All models were good at showing that hyperspectral imaging is a relevant method to predict sugar, total flavonoid, and total anthocyanin contents. The best predictions were obtained from optimal wavelength selection based on coefficients for TSS and from VIPs optimal wavelength windows using SNV pre-treatment for total flavonoid and total anthocyanin content. Thus, good prediction models were proposed in order to characterize grapes while reducing the data sets and limit the data storage to enable an industrial use

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa
    • …
    corecore