1,800 research outputs found

    The Planetary Mass Companion 2MASS1207-3932 B: Temperature, Mass and Evidence for an Edge-On Disk

    Full text link
    We present J-band imaging and H+K-band low-resolution spectroscopy of 2MASS1207-3932 AB, obtained with VLT NACO. For the putative planetary mass secondary, we find J = 20.0+/-0.2 mag. The HK spectra of both components imply low gravity, and a dusty atmosphere for the secondary. Comparisons to synthetic spectra yield Teff_A ~ 2550+/-150K, and Teff_B ~ 1600+/-100K, consistent with their late-M and mid-to-late L types. For these Teff, and an age of 5-10 Myrs, evolutionary models imply M_A ~ 24+/-6 M_Jup and M_B ~ 8+/-2 M_Jup. Independent comparisons of these models to the observed colors, spanning ~I to L', also yield the same masses and temperatures. Our primary mass agrees with other recent analyses; however, our secondary mass, while still in the planetary regime, is 2-3 times larger than claimed previously. This discrepancy can be traced to the luminosities: while the absolute photometry and Mbol of the primary agree with theoretical predictions, the secondary is ~ 2.5+/-0.5 mag fainter than expected in all bands from I to L' and in Mbol. This accounts for the much lower secondary mass (and temperature) derived earlier. We argue that this effect is highly unlikely to result from a variety of model-related problems, and is instead real. This conclusion is bolstered by the absence of any luminosity problems in either the primary, or in AB Pic B which we also analyse. We therefore suggest grey extinction in 2M1207B, due to occlusion by an edge-on circum-secondary disk. This is consistent with the observed properties of edge-on disks around T Tauri stars, and with the known presence of a high-inclination evolved disk around the primary. Finally, the system's implied mass ratio of ~0.3 suggests a binary-like formation scenario. (abridged)Comment: Accepted by The Astrophysical Journal, 43 pages text + 16 figs + 1 tabl

    An extreme IMF as an explanation for high M/L ratios in UCDs? The CO index as a tracer of bottom heavy IMFs

    Full text link
    A new type of compact stellar systems, labelled ``ultra-compact dwarf galaxies'' (UCDs), was discovered in the last decade. Recent studies show that their dynamical mass-to-light ratios (M/L) tend to be too high to be explained by canonical stellar populations, being on average about twice as large as those of Galactic globular clusters of comparable metallicity. If this offset is caused by dark matter in UCDs, it would imply dark matter densities as expected for the centers of cuspy dark matter halos, incompatible with cored dark matter profiles. Investigating the nature of the high M/L ratios in UCDs therefore offers important constraints on the phase space properties of dark matter particles. Here we describe an observational method to test whether a bottom-heavy IMF may cause the high M/L ratios of UCDs. We propose to use the CO index at 2.3mu -- which is sensitive to the presence of low-mass stars -- to test for a bottom heavy IMF. In the case that the high M/L ratios are caused by a bottom-heavy IMF, we show that the equivalent width of the CO index will be up to 30% weaker in UCDs compared to sources with similar metallicity that have canonical IMFs. We find that these effects are well detectable with current astronomical facilities in a reasonable amount of time (a few hours to nights). Measuring the CO index of UCDs hence appears a promising tool to investigate the origin of their high M/L ratios.Comment: 7 pages, 5 figures, accepted for publication in Ap

    Dynamical Mass Estimates for Five Young Massive Stellar Clusters

    Full text link
    We have obtained high-dispersion spectra for four massive star clusters in the dwarf irregular galaxies NGC 4214 and NGC 4449, using the HIRES spectrograph on the Keck I telescope. Combining the velocity dispersions of the clusters with structural parameters and photometry from images taken with HST, we estimate mass-to-light ratios and compare these with simple stellar population (SSP) models in order to constrain the stellar mass functions (MFs). For all clusters we find mass-to-light ratios which are similar to or slightly higher than for a Kroupa MF, and thereby rule out any MF which is deficient in low-mass stars compared to a Kroupa-type MF. The four clusters have virial masses ranging between 2.1E5 Msun and 1.5E6 Msun, half-light radii between 3.0 and 5.2 pc, estimated core densities in the range 2E3 Msun pc^-3 to 2E5 Msun pc^-3 and ages between 200 Myr and 800 Myr. We also present new high-dispersion near-infrared spectroscopy for a luminous young (about 15 Myr) cluster in the nearby spiral galaxy NGC 6946, which we have previously observed with HIRES. The new measurements in the infrared agree well with previous estimates of the velocity dispersion, yielding a mass of about 1.7E6 Msun. The properties of the clusters studied here are all consistent with the clusters being young versions of the old globular clusters found around all major galaxies.Comment: 30 pages, including 7 figures and 9 tables. Corrected an error in Table 2: The colors listed for N6946-1447 were not reddening corrected. This also affected Table 9 and Fig 2, 6 and

    Strain localization and percolation of stable structure in amorphous solids

    Full text link
    Spontaneous strain localization occurs during mechanical tests of a model amorphous solid simulated using molecular dynamics. The degree of localization depends upon the extent of structural relaxation prior to mechanical testing. In the most rapidly quenched samples higher strain rates lead to increased localization, while the more gradually quenched samples exhibit the opposite strain rate dependence. This transition coincides with the k-core percolation of atoms with quasi-crystal-like short range order. The authors infer the existence of a related microstructural length scale.Comment: 4 pages, 4 figure

    Star Formation and Selective Dust Extinction in Luminous Starburst Galaxies

    Get PDF
    We investigate the star formation and dust extinction properties of very luminous infrared galaxies whose spectra display a strong Hdelta line in absorption and a moderate [OII] emission (e[a] spectrum). This spectral combination has been suggested to be a useful method to identify dusty starburst galaxies at any redshift on the basis of optical data alone. We compare the average e(a) optical spectrum with synthetic spectra that include both the stellar and the nebular contribution, allowing dust extinction to affect differentially the stellar populations of different ages. We find that reproducing the e(a) spectrum requires the youngest stellar generations to be significantly more extinguished by dust than older stellar populations, and implies a strong ongoing star formation activity at a level higher than in quiescent spirals. A model fitting the optical spectrum does not necessarily produce the observed FIR luminosity and this can be explained by the existence of stellar populations which are practically obscured at optical wavelengths. Models in which dust and stars are uniformly mixed yield a reddening of the emerging emission lines which is too low compared to observations: additional foreground reddening is required.Comment: 17 pages, 4 Postscript figures, ApJ in pres

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa

    A Medium-Resolution Near-Infrared Spectral Library of Late Type Stars: I

    Full text link
    We present an empirical infrared spectral library of medium resolution (R~2000-3000) H (1.6 micron) and K (2.2 micron) band spectra of 218 red stars, spanning a range of [Fe/H] from ~-2.2 to ~+0.3. The sample includes Galactic disk stars, bulge stars from Baade's window, and red giants from Galactic globular clusters. We report the values of 19 indices covering 12 spectral features measured from the spectra in the library. Finally, we derive calibrations to estimate the effective temperature, and diagnostic relationships to determine the luminosity classes of individual stars from near-infrared spectra. This paper is part of a larger effort aimed at building a near-IR spectral library to be incorporated in population synthesis models, as well as, at testing synthetic stellar spectra.Comment: 34 pages, 12 figures; accepted for publication at ApJS; the spectra are available from the authors upon reques

    VLT/ISAAC H-band spectroscopy of embedded massive YSOs

    Full text link
    We have performed intermediate resolution (R = 5000), high signal-to-noise H-band spectroscopy of a small, initial sample of three massive embedded young stellar objects (YSOs), using VLT/ISAAC. The sample has been selected from sources characterised in previous literature as being likely of OB spectral type, to be unambiguously associated with bright (H < 14) single point sources in the 2MASS database, and to have no optical counterparts. Of the targets observed, one object shows a ~B3 spectrum, similar to a main sequence object of the same spectral type. A second object exhibits weak HeI and H emission, indicating an early-type source: we detect HeII absorption, which supports a previous indirect derivation of the spectral type as mid-O. The third object does not show absorption lines, so no spectral type can de derived. It does, however, exhibit a rich spectrum of strong, broad emission lines and is likely to be surrounded by dense circumstellar material and at a very early evolutionary stage. Our results from this very small sample are in agreement with those of Kaper et al. (2002), who also find spectra similar to optically visible main sequence stars, together with emission line objects representing a very early evolutionary phase, in their much larger sample of K-band spectra.Comment: 10 pages, 14 figures, A&A (accepted

    Infrared Spectroscopic Study of a Selection of AGB and Post-AGB Stars

    Full text link
    We present here near-infrared spectroscopy in the H and K bands of a selection of nearly 80 stars that belong to various AGB types, namely S type, M type and SR type. This sample also includes 16 Post-AGB (PAGB) stars. From these spectra, we seek correlations between the equivalent widths of some important spectral signatures and the infrared colors that are indicative of mass loss. Repeated spectroscopic observations were made on some PAGB stars to look for spectral variations. We also analyse archival SPITZER mid-infrared spectra on a few PAGB stars to identify spectral features due to PAH molecules providing confirmation of the advanced stage of their evolution. Further, we model the SEDs of the stars (compiled from archival data) and compare circumstellar dust parameters and mass loss rates in different types. Our near-infrared spectra show that in the case of M and S type stars, the equivalent widths of the CO(3-0) band are moderately correlated with infrared colors, suggesting a possible relationship with mass loss processes. A few PAGB stars revealed short term variability in their spectra, indicating episodic mass loss: the cooler stars showed in CO first overtone bands and the hotter ones showed in HI Brackett lines. Our spectra on IRAS 19399+2312 suggest that it is a transition object. From the SPITZER spectra, there seems to be a dependence between the spectral type of the PAGB stars and the strength of the PAH features. Modelling of SEDs showed among the M and PAGB stars that the higher the mass loss rates, the higher the [K-12] colour in our sample.Comment: 14 pages; accepted in MNRAS, 200
    • 

    corecore