168 research outputs found
Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes
The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes â carotid body glomus cells, and âpulmonary neuroendocrine cellsâ (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive âneuroepithelial cellsâ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches
Formal caregivers of older adults: reflection about their practice
OBJECTIVE To understand the job function of caregivers of older adults and contribute to the debate on the consolidation of this professional practice. METHODOLOGICAL PROCEDURES This is a descriptive, qualitative, and exploratory study. Four focal group sessions were performed in 2011 with 11 elderly companions, formal caregivers of older adults in the Programa Acompanhante de Idosos (Program for Caregivers of Older Adults), Sao Paulo, SP, Southeastern Brazil. These sessions, guided by a semi-structured script, were audio-recorded and fully transcribed. Data were analyzed using the Content Analysis technique, Thematic Modality. RESULTS In view of considering the caregivers of older adults as a new category of workers, it was difficult to define their duties. The elderly companions themselves as well as the care receivers, their families, and the professionals that comprised the team were unclear about their duties. The professional practice of these formal caregivers has been built on the basis of constant discussions and negotiations among them and other team members in Programa Acompanhante de Idosos during daily work. This was achieved via a recognition process of their job functions and by setting apart other workersâ exclusive responsibilities. CONCLUSIONS The delimitation of specific job functions for elderly companions is currently one of the greatest challenges faced by these workers to develop and consolidate their professional role as well as improve Programa Acompanhante de Idosos
Pancreatic progenitor epigenome maps prioritize type 2 diabetes risk genes with roles in development
Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes (LAMA1) and (CRB2). Knockdown of (lama1) or (crb2) in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D
Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes
The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.This work was funded by the Wellcome Trust (Ph.D. Studentship 086804/Z/08/Z to DH; Senior Investigator Award 102889/Z/13/Z to AST), the NIDCR/NIH (R21-DE021509 to SF; R01-DE018477 to EWK), the NIDDK/NIH (1DP2DK098092 to PDSD), the NIH (R01-HL092217 to EWK), the Zebrafish Initiative of the Vanderbilt University Academic Venture Capital Fund (to EWK), the Vanderbilt International Scholar Program (to GU), the HFSP (Long-Term Fellowship to CM) and the Swiss National Science Foundation (Advanced Postdoctoral Fellowship and Professorship to CM). For further information, please visit the publisher's website
- âŠ