165 research outputs found

    Inequities in Chronic Stress Exposure at the Intersection of Race, Gender, and Sexual Identity in a Nationally Representative Sample of U.S. Adults

    Get PDF
    Background Social inequity rooted in systemic oppression is robustly associated with mental and physical health; chronic stress is highlighted as a key mechanism. Limited research examining the association between sexual identity alone and C-reactive protein (CRP) – an upstream biological marker of chronic stress exposure – has yielded mixed results. Purpose To examine whether race/ethnicity, gender, and sexual identity interact to produce unequal levels of CRP. Methods Using cross-sectional data from the 2003-2010 waves of the National Health and Nutrition Examination Survey, we examined intersectional (self-reported race*gender*sexual identity) patterns in log-transformed CRP levels using a multivariable linear model among 10,885 participants who contributed biospecimen data during their examination. We estimated the percent change in mean log-CRP levels between identity groups when compared to the referent group (straight, non-Hispanic White men). Results Mean CRP ranged from 0.16 to 0.89 mg/dL. Relative to straight non-Hispanic White men, mean log-CRP levels were generally higher among women, regardless of race and sexual identity, with Black women identifying as “something else” having the highest percent change in mean log-CRP. Among men, the highest percent change in mean log-CRP were observed for those reporting a sexuality of “something else”. Conclusion Across identities, there is evidence of unequal levels of CRP that can contribute to chronic stress. Understanding the intricate interactions between these identities and health is vital for guiding effective interventions. More nuanced approaches to data collection informed by the queer community must be applied to future research to better capture the experiences of these populations

    Implantation of a three-dimensional fibroblast matrix improves left ventricular function and blood flow after acute myocardial infarction

    Get PDF
    This study was designed to determine if a viable biodegradable three-dimensional fibroblast construct (3DFC) patch implanted on the left ventricle after myocardial infarction (MI) improves left ventricular (LV) function and blood flow. We ligated the left coronary artery of adult male Sprague-Dawley rats and implanted the 3DFC at the time of the infarct. Three weeks after MI, the 3DFC improved LV systolic function by increasing (p < 0.05) ejection fraction (37 +/- 3% to 62 +/- 5%), increasing regional systolic displacement of the infarcted wall (0.04 +/- 0.02 to 0.11 +/- 0.03 cm), and shifting the passive LV diastolic pressure volume relationship toward the pressure axis. The 3FDC improved LV remodeling by decreasing (p < 0.05) LV end-systolic and end-diastolic diameters with no change in LV systolic pressure. The 3DFC did not change LV end-diastolic pressure (LV EDP; 25 +/- 2 vs. 23 +/- 2 mmHg) but the addition of captopril (2mg/L drinking water) lowered (p < 0.05) LV EDP to 12.9 +/- 2.5 mmHg and shifted the pressure-volume relationship toward the pressure axis and decreased (p < 0.05) the LV operating end-diastolic volume from 0.49 +/- 0.02 to 0.34 +/- 0.03 ml. The 3DFC increased myocardial blood flow to the infarcted anterior wall after MI over threefold (p < 0.05). This biodegradable 3DFC patch improves LV function and myocardial blood flow 3 weeks after MI. This is a potentially new approach to cell-based therapy for heart failure after MI

    Rescaling quality of life values from discrete choice experiments for use as QALYs: a cautionary tale

    Get PDF
    Background: Researchers are increasingly investigating the potential for ordinal tasks such as ranking and discrete choice experiments to estimate QALY health state values. However, the assumptions of random utility theory, which underpin the statistical models used to provide these estimates, have received insufficient attention. In particular, the assumptions made about the decisions between living states and the death state are not satisfied, at least for some people. Estimated values are likely to be incorrectly anchored with respect to death (zero) in such circumstances. Methods: Data from the Investigating Choice Experiments for the preferences of older people CAPability instrument (ICECAP) valuation exercise were analysed. The values (previously anchored to the worst possible state) were rescaled using an ordinal model proposed previously to estimate QALY-like values. Bootstrapping was conducted to vary artificially the proportion of people who conformed to the conventional random utility model underpinning the analyses. Results: Only 26% of respondents conformed unequivocally to the assumptions of conventional random utility theory. At least 14% of respondents unequivocally violated the assumptions. Varying the relative proportions of conforming respondents in sensitivity analyses led to large changes in the estimated QALY values, particularly for lower-valued states. As a result these values could be either positive (considered to be better than death) or negative (considered to be worse than death). Conclusion: Use of a statistical model such as conditional (multinomial) regression to anchor quality of life values from ordinal data to death is inappropriate in the presence of respondents who do not conform to the assumptions of conventional random utility theory. This is clearest when estimating values for that group of respondents observed in valuation samples who refuse to consider any living state to be worse than death: in such circumstances the model cannot be estimated. Only a valuation task requiring respondents to make choices in which both length and quality of life vary can produce estimates that properly reflect the preferences of all respondents

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore