6,359 research outputs found

    Quantum dense coding in multiparticle entangled states via local measurements

    Full text link
    In this paper, we study quantum dense coding between two arbitrarily fixed particles in a (N+2)-particle maximally-entangled states through introducing an auxiliary qubit and carrying out local measurements. It is shown that the transmitted classical information amount through such an entangled quantum channel usually is less than two classical bits. However, the information amount may reach two classical bits of information, and the classical information capacity is independent of the number of the entangled particles in the initial entangled state under certain conditions. The results offer deeper insights to quantum dense coding via quantum channels of multi-particle entangled states.Comment: 3 pages, no figur

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    Fractal property of generalized M-set with rational number exponent

    Get PDF
    Dynamic systems described by fc(z) = z2 + c is called Mandelbrot set (M-set), which is important for fractal and chaos theories due to its simple expression and complex structure. fc(z) = zk + c is called generalized M set (k–M set). This paper proposes a new theory to compute the higher and lower bounds of generalized M set while exponent k is rational, and proves relevant properties, such as that generalized M set could cover whole complex number plane when k 1), and that k–M set can be divided into |p–q| isomorphic parts

    Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    Get PDF
    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment

    Multicystic Changes of Juvenile Nasopharyngeal Angiofibroma: The First Case Report in the Literature

    Full text link
    Multicystic changes of juvenile nasopharyngeal angiofibroma: the first case report in the literature. Otolaryngologists, pathologists, and radiologists had better pay attention to this infrequent incidence
    corecore