1,117 research outputs found

    Residue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance

    Get PDF
    The pH-low insertion peptide (pHLIP) binds to a membrane at pH 7.4 unstructured but folds across the bilayer as a transmembrane helix at pH similar to 6. Despite their promising applications as imaging probes and drug carriers that target cancer cells for cytoplasmic cargo delivery, the mechanism of pH modulation on pHLIP-membrane interactions has not been completely understood. Here, we show the first study on membrane-associated pHLIP using solid-state NMR spectroscopy. Data on residue-specific conformation and membrane location describe pHLIP in various surface-bound and membrane-inserted states at pH 7.4, 6.4 and 5.3. The critical membrane-adsorbed state is more complex than previously envisioned. At pH 6.4, for the major unstructured population, the peptide sinks deeper into the membrane in a state II\u27 that is distinct from the adsorbed state II observed at pH 7.4, which may enable pHLIP to sense slight change in acidity even before insertion

    Statistical Modelling of Recent Changes in Extreme Rainfall in Taiwan

    Get PDF
    This paper has two primary purposes. First, we fit the annual maximum daily rainfall data for 6 rainfall stations, both with stationary and non-stationary generalized extreme value (GEV) distributions for the periods 1911-2010 and 1960-2010 in Taiwan, and detect the changes between the two phases for extreme rainfall. The non-stationary model means that the location parameter in the GEV distribution is a linear function of time to detect temporal trends in maximum rainfall. Second, we compute the future behavior of stationary models for the return levels of 10, 20, 50 and 100-years based on the period 1960-2010. In addition, the 95% confidence intervals of the return levels are provided. This is the first investigation to use generalized extreme value distributions to model extreme rainfall in Taiwan

    Role of the Autonomic Nervous System in Atrial Fibrillation: Pathophysiology and Therapy

    Get PDF
    Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia (AT) and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review we focus on the relationship between the autonomic nervous system and the pathophysiology of AF, and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches and biological therapies. While the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future

    Defective Morphogenesis and Functional Maturation in Fetal Islet-Like Cell Clusters From OLETF Rat, A Model of NIDDM

    Get PDF
    A failure in the compensate proliferation of pancreatic β-cells, as the primary pathogenic event, has been reported in OLETF rat, a model of NIDDM. The aim of the present study is to define whether the β-cell defect is attributed to the fetal stage islet development, if so, whether the defect involves down regulation of PDX-1 protein expression. Morphological changes, β-cell function, and the expression of PDX-1 protein were examined in the cultured fetal islet-like cell clusters (ICCs) from OLETF rats along with their diabetes-resistant control counterpart LETO rats in the presence of 5.5 or 11.1mM glucose for 48, 72, 96, and 120-hr, respectively. We have observed four abnormalities in the ICCs of OLETF rats. First, a defective morphogenesis was noted during the 72 to 120-hr ICC culture, a period characterized by a dramatic increase in both β-cell and non-β-cell (α,σ, and PP) populations in control rats. This defective morphogenesis was demonstrated by a growth retardation of epithelial stratification and poor development of both β-cell and non-β-cell masses along with a parallel decline in relevant islet hormone contents. Second, a functional defect was characterized by failure to response to glucose during the 96 to 120- hr-cultured ICCs. Third, the ultrastructural analysis revealed a significant reduction in the number of secretory granules. Four, Western blot analysis showed a significant decrease of PDX-1 protein expression in the OLETF ICCs cultured in 11.1mM glucose for 48 to 72-hr and in 5.5mM glucose for 120-hr. Therefore, we concluded that during the fetal stage of islet development, OLETF rats exhibit both morphological and functional defects

    Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction Implications for Catheter Ablation of Atrial-Pulmonary Vein Junction

    Get PDF
    ObjectivesThis study sought to examine the muscle connections and autonomic nerve distributions at the human pulmonary vein (PV)-left atrium (LA) junction.BackgroundOne approach to catheter ablation of atrial fibrillation (AF) is to isolate PV muscle sleeves from the LA. Elimination of vagal response further improves success rates.MethodsWe performed immunohistochemical staining on 192 circumferential venoatrial segments (32 veins) harvested from 8 autopsied human hearts using antibodies to tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT).ResultsMuscular discontinuities of widths 0.1 to 5.5 mm (1.1 ± 1.0 mm) and abrupt 90° changes in fiber orientation were found in 70 of 192 (36%) and 36 of 192 (19%) of PV-LA junctions, respectively. Although these anisotropic features were more common in the anterosuperior junction (p < 0.01), they were also present around the entire PV-LA junction. Autonomic nerve density was highest in the anterosuperior segments of both superior veins (p < 0.05 versus posteroinferior) and inferior segments of both inferior veins (p < 0.05 vs. superior), highest in the LA within 5 mm of the PV-LA junction (p < 0.01), and higher in the epicardium than endocardium (p < 0.01). Adrenergic and cholinergic nerves were highly co-located at tissue and cellular levels. A significant proportion (30%) of ganglion cells expressed dual adrenocholinergic phenotypes.ConclusionsMuscular discontinuities and abrupt fiber orientation changes are present in >50% of PV-LA segments, creating significant substrates for re-entry. Adrenergic and cholinergic nerves have highest densities within 5 mm of the PV-LA junction, but are highly co-located, indicating that it is impossible to selectively target either vagal or sympathetic nerves during ablation procedures

    Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    Full text link
    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.Key PointsIon temperature anisotropies and proton beam/core flows are sources of enhanced field observationsFor two events Alfven‐cyclotron modes are most unstableFor three events magnetosonic modes are most unstablePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/1/jgra52322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/2/jgra52322_am.pd

    Impaired Notch Signaling Promotes \u3cem\u3eDe novo\u3c/em\u3e Squamous Cell Carcinoma Formation

    Get PDF
    Signaling through Notch receptors in the skin has been implicated in the differentiation, proliferation, and survival of keratinocytes, as well as in the pathogenesis of basal cell carcinoma (BCC). To determine the composite function of Notch receptor–mediated signaling in the skin and overcome potential redundancies between receptors, conditional transgenic mice were generated that express the pan-Notch inhibitor, dominant-negative Mastermind Like 1 (DNMAML1), to repress all canonical [CBF-1/Suppressor of hairless/LAG-1 (CSL)–dependent] Notch signaling exclusively in the epidermis. Here, we report that DNMAML1 mice display hyperplastic epidermis and spontaneously develop cutaneous squamous cell carcinoma (SCC) as well as dysplastic precursor lesions, actinic keratoses. Mice expressing epidermal DNMAML1 display enhanced accumulation of nuclear ß-catenin and cyclin D1 in suprabasilar keratinocytes and in lesional cells from SCCs, which was also observed in human cutaneous SCC. These results suggest a model wherein CSL-dependent Notch signaling confers protection against cutaneous SCC. The demonstration that inhibition of canonical Notch signaling in mice leads to spontaneous formation of SCC and recapitulates the disease in humans yields fundamental insights into the pathogenesis of SCC and provides a unique in vivo animal model to examine the pathobiology of cutaneous SCC and for evaluating novel therapies

    Triplex targeted genomic crosslinks enter separable deletion and base substitution pathways

    Get PDF
    We have synthesized triple helix forming oligonucleotides (TFOs) that target a psoralen (pso) interstrand crosslink to a specific chromosomal site in mammalian cells. Mutagenesis of the targeted crosslinks results in base substitutions and deletions. Identification of the gene products involved in mutation formation is important for developing practical applications of pso-TFOs, and may be informative about the metabolism of other interstrand crosslinks. We have studied mutagenesis of a pso-TFO genomic crosslink in repair proficient and deficient cells. Deficiencies in non homologous end joining and mismatch repair do not influence mutation patterns. In contrast, the frequency of base substitutions is dependent on the activity of ERCC1/XPF and polymerase ζ, but independent of other nucleotide excision repair (NER) or transcription coupled repair (TCR) genes. In NER/TCR deficient cells the frequency of deletions rises, indicating that in wild-type cells NER/TCR functions divert pso-TFO crosslinks from processes that result in deletions. We conclude that targeted pso-TFO crosslinks can enter genetically distinct mutational routes that resolve to base substitutions or deletions
    corecore