14 research outputs found

    Fatigue equation of cement-treated aggregate base materials under a true stress ratio

    Get PDF
    The objective of this article is to establish a fatigue equation based on the true stress ratio for cement-treated aggregate base materials. The true stress ratio herein means the ratio of the stress and the true strength of the cement-treated aggregate base materials related to loading rates and curing times. The unconfined compressive strength tests and compressive resilience modulus tests were carried out under various loading rates and curing times of 3, 7, 14, 28, 60, 90 days, respectively. According to the test results, the relationship between the unconfined compressive strength (a mix design parameter in China) and the compressive resilience modulus (a structural design parameter and the construction quality control parameter in China) of the cement-treated aggregate base material with different curing times was established. However, it was found that the strengths varied with the loading rates, which is not reflected in the existing fatigue equations. Therefore, it is questionable to obtain the stress ratio of fatigue tests with a fixed strength value obtained from the standard strength test where the loading rate is fixed (in China, the fixed loading rate is 1 mm/min for cement-treated aggregate base materials). Thus, in this paper, the four-point bending strength (i.e., flexural strength) test was carried out at different loading rates to resolve such deficiencies. Based on the strength test results at different loading rates, the true stress ratio of the fatigue test corresponding to the fatigue loading rate can be calculated. Then the four-point bending fatigue test was conducted to establish an improved fatigue equation characterized by the true stress ratio. The results show that the patterns of variation for unconfined compressive strength increasing with the curing time were similar to that of the compressive resilience modulus. The fatigue equation curve based on the true stress ratio can be extended to the strength failure point of (1, 1), where both the true stress ratio and the fatigue life value are one. The internal relationship between the strength failure and the fatigue failure was unified. This article provides a theoretical method and basis for unifying the mix design parameters and the construction quality control parameters

    Simultaneous Formation of CH₃NH₃PbI₃ and electron transport layers using antisolvent method for efficient perovskite solar cells

    Get PDF
    A new antisolvent method was developed to prepare CH₃NH₃PbI₃ and electron transport layers for making efficient hybrid perovskite solar cells. By directly using [6,6]-phenyl-C61-butyric acid methyl ester in chlorobenzene solution as antisolvent, CH₃NH₃PbI₃ and electron transport layers were simultaneously formed in the films. This method not only simplifies the fabrication process of devices, but also produces uniform perovskite films and improves the interfacial structures between CH₃NH₃PbI₃ and electron transport layers. Large perovskite grains were observed in these films, with the average grain size of >1 μm. The so-formed CH₃NH₃PbI₃/electron transport layers demonstrated good optical and charge transport properties. And perovskite solar cells fabricated using these simultaneously-formed layers achieved a higher power conversion efficiency of 16.58% compared to conventional antisolvent method (14.92%). This method reduces nearly 80% usage of chlorobenzene during the fabrication, offering a more facile and environment-friendly approach to fabricate efficient perovskite solar cells than the conventional antisolvent method

    Microstructural and optical properties of HC(NH2)(2)PbI3 thin films prepared by single source thermal evaporation

    No full text
    International audienceThe HC(NH2)(2)PbI3 thin films as the perovskite solar cells absorption layer were prepared by single-source thermal evaporation. The stoichiometric ratio effects of HC(NH2)(2)I/PbI2 precursors on the properties of HC(NH2)(2)PbI3 thin films were investigated. The microstructure, surface morphology and optical properties of HC(NH2)(2)PbI3 thin films were characterized by X-ray diffraction (XRD), energy dispersive spectroscope, scanning electron microscopy and spectrophotometer respectively. The results show that, with stoichiometric ratio of FAI/PbI2 3:1, the XRD results of formamidine lead iodine thin films prepared by single source thermal evaporation indicated the typical peaks of HC(NH2)(2)PbI3 thin films with few impurities. The dense and uniform films were formed with large crystal grains on the surface and high crystallization. The Pb/I element ratio was approximate to the ideal stoichiometric ratio of HC(NH2)(2)PbI3 thin films. The band gap of the HC(NH2)(2)PbI3 thin film calculated was 1.5 eV, which satisfied the optical properties requirement of absorbers for perovskite solar cell applications, making them potential applicable for large-area efficient perovskite solar cells

    Highly Uniform Large-Area (100 cm2) Perovskite CH3NH3PbI3 Thin-Films Prepared by Single-Source Thermal Evaporation

    No full text
    In this work, we report the reproducible preparation method of highly uniform large-area perovskite CH3NH3PbI3 thin films by scalable single-source thermal evaporation with the area of 100 cm2. The microstructural and optical properties of large-area CH3NH3PbI3 thin films were investigated. The dense, uniform, smooth, high crystallinity of large-area perovskite thin film was obtained. The element ratio of Pb/I was close to the ideal stoichiometric ratio of CH3NH3PbI3 thin film. These films show a favorable bandgap of 1.58 eV, long and balanced carrier-diffusion lengths. The CH3NH3PbI3 thin film perovskite solar cell shows a stable efficiency of 7.73% with almost no hysteresis, indicating a single-source thermal evaporation that is suitable for a large area perovskite solar cell

    Effect of lead-free (CH3NH3)3Bi2I9 perovskite addition on spectrum absorption and enhanced photovoltaic performance of bismuth triiodide solar cells

    Get PDF
    Active composite layers of bismuth triiodide (BiI3) and lead-free (CH3NH3)3Bi2I9 (MBI) perovskite were prepared using a simple chemical solution method under ambient conditions for thin-film solar cells. Results of X-ray diffraction and scanning electron microscopy indicated that the crystallization and surface morphologies of the composite films varied with perovskite contents. Multi-absorption was observed in the composite films due to the bandgap difference between BiI3 and MBI perovskite. Moreover, band bending at the BiI3-perovskite interfaces resulted in the realignment of energy levels in the composite films, and this phenomenon was beneficial to the efficient injection of excited electrons from the active layers into the TiO2 layers. Accordingly, due to the optimized crystallization and realigned energy level, when 20% of MBI perovskite was introduced into the active layers, the open-circuit voltage obviously increased from 0.44 V to 0.57 V in the (BiI3)0.8(MBI)0.2 composites solar cells, enhancing their power conversion efficiency by 67% compared with that in pure BiI3 solar cell. This study developed a new route for designing more efficient lead-free solar cells

    High-Quality Perovskite CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Thin Films for Solar Cells Prepared by Single-Source Thermal Evaporation Combined with Solvent Treatment

    No full text
    In this work, solvent annealing process for CH3NH3PbI3 thin film prepared by single source evaporation was reported. Characterized by the scanning electron microscope (SEM), X-ray diffractometer (XRD), energy dispersive spectroscope (EDS), ultraviolet-visible (UV) spectrophotometer, and the photoluminescence (PL) spectrometer, our method ensured higher quality film with crystallinity, composition, well-defined grain structure, and reproducibility. The optimized solar cell device based on the structure of ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag achieved better performance in power conversion efficiency from 2.64% to 9.92%, providing an effective method to optimize the quality of perovskite film for solar cell application

    Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    No full text
    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells
    corecore