17 research outputs found

    Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases

    Get PDF
    Diet and lifestyle play a significant role in the development chronic diseases; however the full complexity of this relationship is not yet understood. Dietary pattern investigation, which reflects the complexity of dietary intake, has emerged as an alternative and complementary approach for examining the association between diet and chronic diseases. Literature on this association has largely focused on individual nutrients, with conflicting outcomes, but individuals consume a combination of foods from many groups that form dietary patterns. Our objective was to systematically review the current findings on the effects of dietary patterns on chronic diseases. In this review, we describe and discuss the relationships between dietary patterns, such as the Mediterranean, the Dietary Approach to Stop Hypertension, Prudent, Seventh-day Adventists, and Western, with risk of obesity, type-2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenearive diseases. Evidence is increasing from both observational and clinical studies that plant-based dietary patterns, which are rich in fruits, vegetables, and whole grains, are valuable in preventing various chronic diseases, whereas a diet high in red and processed meat, refined grains and added sugar seems to increase said risk. Dietary pattern analysis might be especially valuable to the development and evaluation of food-based dietary guidelines

    Higher circulating Vitamin B12 is associated with lower levels of inflammatory markers in individuals at high cardiovascular risk and in naturally aged mice

    Full text link
    Vitamin B12 is an essential nutrient that is involved in numerous physiological processes, and its deficiency can lead to various complications, including neurological and haematological disorders. Some studies have suggested that vitamin B12 may have anti-inflammatory effects, but the mechanisms underlying this relationship are not yet fully understood. We investigated the relationship between circulating vitamin B12 and inflammatory markers interleukin-6 (IL-6) and C-reactive protein (CRP). The association of peripheral levels of vitamin B12 with IL-6 and CRP was assessed in 136 human samples from a high cardiovascular risk population. To corroborate the results from the human trial, the analysis was replicated in naturally aged mice.Individuals with higher serum levels of vitamin B12 showed lower concentrations of IL-6 and CRP after adjustment for potential confounders, and an inverse association was also found between serum IL-6 and vitamin B12 levels in naturally aged mice.That circulating vitamin B12 was inversely associated with IL-6 and CRP in humans and with IL-6 in mice suggests that it may exert an anti-inflammatory effect through modulation of these pro-inflammatory molecules. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved

    Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL.

    No full text
    In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded by a 2-wk washout period. The levels of LDL hydroxytyrosol monosulfate and homovanillic acid sulfate, but not of tyrosol sulfate, increased after VOO ingestion (P < 0.05), whereas the concentrations of circulating oxidation markers, including oxidized LDL (oxLDL), conjugated dienes, and hydroxy fatty acids, decreased (P < 0.05). The levels of LDL phenols and oxidation markers were not affected by ROO consumption. The relative increase in the 3 LDL phenols was greater when men consumed VOO than when they consumed ROO (P < 0.05), as was the relative decrease in plasma oxLDL (P = 0.001) and hydroxy fatty acids (P < 0.001). Plasma oxLDL concentrations were negatively correlated with the LDL phenol levels (r = -0.296; P = 0.013). Phenols in LDL were not associated with other oxidation markers. In summary, the phenol concentration of olive oil modulates the phenolic metabolite content in LDL after sustained, daily consumption. The inverse relationship of these metabolites with the degree of LDL oxidation supports the in vivo antioxidant role of olive oil phenolics compound
    corecore