394 research outputs found

    National MEMS Technology Roadmap - Markets, Applications and Devices

    Get PDF
    MEMS teknologiaa on jo pitkään käytetty lukuisien eri laitteiden valmistamiseen. Osa näistä laitteista on ollut markkinoilla jo useita vuosia, kun taas osa on vasta kehitysvaiheessa. Jotta tutkimus ja kehitystyötä osattaisiin jatkossa kohdistaa oikeille painopistealueille, on tärkeää tietää mihin suuntaan kehitys on menossa. Tämä työ on osa kansallista MEMS teknologioiden tiekartta -projektia ja sen tavoitteena oli selvittää MEMS laitteiden kehityksen suuntaa. Työ toteutettiin laajana kirjallisuustutkimuksena. Lisäksi tulosten tueksi haastateltiin asiantuntijoita Suomen MEMS teollisuudesta. Työssä tarkasteltiin lukuisia jo markkinoilta löytyviä ja vasta kehitteillä olevia MEMS laitteita ja analysoitiin niitä sekä teknisestä että kaupallisesta näkökulmasta. Tutkimuksen perusteella kävi ilmi, että MEMS markkinat ovat pitkään muodostuneet vakiintuneista laitteista kuten mustesuihkupäistä, kiihtyvyysantureista, paineantureista sekä RF suotimista. Lisäksi mikrofonit, gyroskoopit ja optiset laitteet ovat olleet kaupallisesti saatavilla jo pitkään. Markkinat ovat hiljattain alkaneet tehdä tilaa myös uusille MEMS laitteille, joita tulee ulos nopeaa vauhtia. Viimeisimpänä markkinoille tulleita laitteita ovat erilaiset mikrofluidistiikka laitteet, mikrobolometrit sekä yhdistelmäanturit. Pian kaupallisesti saatavia laitteita ovat magnetometrit, automaattitarkennuslaitteet sekä MEMS oskillaattorit. Näiden laitteiden lisäksi kehitteillä on monia uusia MEMS laitteita, jotka saattavat tarjota merkittäviä mahdollisuuksia tulevaisuudessa. Kehitteillä olevia laitteita ovat erilaiset lääketieteelliset laitteet, atomikellot, mikrojäähdyttimet, mikrokaiuttimet, energiantuottolaitteet sekä RFID-laitteet. Kaikki kehitteillä olevista laitteista eivät välttämättä tule menestymään kaupallisesti, mutta jatkuva tutkimustyö osoittaa, että monilla MEMS laitteilla on potentiaalia useissa eri sovelluksissa. Markkinanäkökulmasta tarkasteltuna suurin potentiaali piilee kuluttajaelektroniikka markkinoilla. Muita tulevaisuuden kannalta potentiaalisia markkinoita ovat lääketieteelliset ja teollisuusmarkkinat. Tutkimus osoitti että MEMS laitteiden tutkimukseen ja kehitykseen liittyy monia potentiaalisia painopistealueita tulevaisuudessa. Käyttömahdollisuuksien parantamiseksi monet jo vakiintuneet laitteet kaipaavat vielä parannuksia. Toisaalta, jo olemassa olevia laitteita voidaan hyödyntää uusissa sovelluksissa. Lisäksi monet uusista ja kehitteillä olevista MEMS laitteista vaativat vielä kehitystyötä.MEMS technology has long been applied to the fabrication of various devices from which some have already been in use for several years, whereas others are still under development. In order to find future focus areas in research and development activities in the industry, it is important to know where the development is going. This thesis was conducted as a part of National MEMS technology roadmap, and it aimed for determining the evolution of MEMS devices. The work was conducted as an extensive literature review. In addition, experts from the Finnish MEMS industry were interviewed in order obtain a broader insight to the results. In this thesis various existing and emerging MEMS devices were reviewed and analyzed from technological and commercial perspectives. The study showed that the MEMS market has long been composed of established devices, such as inkjet print-heads, pressure sensors, accelerometers and RF filters. Also gyroscopes, microphones and optical MEMS devices have already been on the market for a long time. Lately, many new devices have started to find their place in the markets. The most recently introduced commercial devices include microfluidic devices, micro bolometers, and combo sensors. There are also a few devices including magnetometers, MEMS oscillators, and auto-focus devices that are currently crossing the gap from R&D to commercialization. In addition to the already available devices, many new MEMS devices are under development, and might offer significant opportunities in the future. These emerging devices include various bioMEMS devices, atomic clocks, micro-coolers, micro speakers, power MEMS devices, and RFID devices. All of the emerging devices might not find commercial success, but the constant stream shows, that there are numerous applications, where MEMS devices could be applied in. From a market point of view, the greatest potential in the future lies in consumer electronics market. Other highly potential markets include medical and industrial markets. The results of the thesis indicate that there are many potential focus areas in the future related to MEMS devices, including improvements of the existing devices in order to gain better utilization, application of the existing devices in new areas, and development work among the emerging devices

    Quantum Brownian motion revisited : extensions and applications

    Get PDF
    Quantum Brownian motion represents a paradigmatic model of open quantum system, namely a system which cannot be treated as an isolated one, because of the unavoidable interaction with the surrounding environment. In this case the central system is constituted by a quantum particle, while the bath is made up by a large set of uncoupled harmonic oscillators. In the original model, the interaction between the system and the environment shows a linear dependence on the particle position. Such a particular form corresponds to a homogeneous environment, inducing a damping and diffusion which depends on the state. This is not the most general situation: often the environment shows an inhomogeneous character given by a space-dependent density, involving a non-linearity in the coupling with the central system. One of the main motivations of the thesis is the study of quantum Brownian motion in presence of this non-linear coupling. In particular we focus on the case in which the bath-particle interaction depends quadratically on the position of the latter. There exist several techniques aimed to treat the physics of the model. For instance one could consider the master equation, namely an equation ruling the temporal evolution of the state of the Brownian particle, here represented by its reduced density matrix. We derive such an equation in the Born-Markov regime and look into its stationary solution, studying its configuration in the phase space. For a non-linear quadratic coupling the stationary state may be approximated by means of a Gaussian Wigner function, that experiences genuine position squeezing (i.e. the position variance of the particle takes a value smaller than that associated to the Heisenberg principle, although this is fulfilled) at low temperature and as the coupling with the bath grows. However, the Born-Markov master equation is not the most appropriate tool to investigate the regime in which squeezing occurs, since the underlying hypothesis in general fail at strong coupling and low temperature, leading to violations of the Heisenberg principle. To overcome this problem we recall alternative methods, such as a Lindblad equation, namely a master equation constructed to preserve the positivity of the state at any time, and Heisenberg equations. In particular we employ the Heisenberg equation formalism to explore the behavior of the Bose polaron, i.e. an impurity embedded in a Bose-Einstein condensate. This experimentally feasible system attracted a lot of attention in the last years. We derive the equation of motion of the impurity position showing that it shows the same form of the famous equation derived by Langevin in 1909 in the context of classical Brownian motion. The main difference lies in the fact that the impurity Langevin-like equation for the impurity carries a certain amount of memory effects, while the original one was purely Markovian. An important part of the work is devoted to the solution of the motion equation for the impurity, in order to calculate the position variance that can be measured in experiments. For this goal we distinguish the case in which the impurity is trapped in a harmonic potential and that where it is free of any trap. In the latter case the impurity the position variance exhibits a quadratic dependence on time (i.e. ballistic diffusion), as a consequence of memory effects. When the impurity is trapped in a harmonic potential it approaches an equilibrium state localized in average in the middle of the trap. Here, at low temperature and for certain values of the coupling strength we detect genuine position squeezing. When we consider a gas with a Thomas-Fermi profile we find that such an effect is improved if we make the gas trap tighter. Genuine squeezing plays an important role in the context of quantum metrology and opens a wide range of possibility to design new protocols, such as the quantum thermometerEl movimiento Browniano cuántico es uno de los principales modelos de sistema abierto, es decir un sistema cuyo comportamiento no se puede tratar de manera separada de su entorno. Este modelo describe la física de una partícula acoplada a un entorno de osciladores. En la versión original del modelo la interacción entre la partícula y el entorno manifiesta una dependencia lineal de la posición de ambos los sistemas. Esta forma analítica del acoplamiento corresponde a un entorno homogeneo, asociado a una fricción y una difusión que dependen del estado del sistema. En todo caso, esta no es la situación más general: a menudo el enorno es inhomogeneo, ya que la densidad no es constante, y esto produce una interacción cuya dependencia de la posición de la partícula no es lineal. Una de las motivaciones principales de esta tesis es el estudio del movimiento Browniano cuántico en presencia de acoplamiento non-lineal. En particular, estudiamos el caso de dependencia cuadrática en la posición de la partícula. Existen muchas técnicas para abordar el modelo. Por ejemplo, se puede emplear la master equation, o sea un ecuación que gobierna la evolución en el tiempo del estado de la partícula, representado por el operador densidad reducido. Derivamos esta ecuación en el régimen de Born-Markov, y estudiamos la forma del estado estacionario en el espacio de las fases. Cuando el acoplamiento es cuadrático, este estado se puede aproximar por medio de una función de Wigner de forma Gausiana, cuya peculiaridad es la emergencia de genuine position squeezing (la varianza de la posición adquiere un valor más bajo de el asociado a la cota de Heisenberg) a temperaturas bajas y cuando el acoplamiento crece. Sin embargo, la ecuación de Born-Markov no es la herramienta más adecuada para tratar el régimen en el que detectamos squeezing, porque las hipótesis subyacentes en general no valen a temperaturas bajas e interacción fuerte, llevando a violaciones del principio de Heisenberg. Para superar este obstáculo es posible emplear métodos alternativos, por ejemplo la ecuación de Lindblad, es decir una ecuación cuya forma sirve para preservar la positividad del estado en cualquier instante, y las ecuaciones de Heisenberg. En particular, aplicamos el formalismo de las ecuaciones de Heisenberg para investigar el comportamiento del Bose polaron, o sea una impureza en un condensado de Bose-Einstein. Es un sistema realista experimentalmente que ha atraido mucha atención recientemente. Derivamos la ecuación del movimiento de la impureza y mostramos que su forma analítica es la misma que la de la ecuación de Langevin para el movimiento Browniano clásico. La diferencia principal es que en este caso la dinámica acarrea efectos de memoria. Una parte importante del trabajo consiste en solucionar esta ecuación del movimiento para evaluar la varianza de la posición, que se puede medir en experimentos. Aquí diferenciamos dos casos: cuando la impureza está atrapada en un potencial armónico, y cuando no hay trampa armónica. En el segundo caso la varianza es proporcional al cuadrado del tiempo (difusión balística), como consecuencia de los efectos de memoria. Cuando la impureza está atrapada alcanza un estado de equilibrio localizado en el medio de la trampa. En este estado, bajando la temperatura y considerando valores del coupling más fuertes detectamos otra vez squeezing. Si consideramos un gas con una densidad de Thomas-Fermi se puede comprobar que este efecto se puede optimizar aprietando la trampa del gas. El estudio del squeezing es muy importante en el marco de la metrología cuántica porque permite el desarrollo de nuevo protocolos como el termometro cuántico

    Water Quality, Chemistry, and Hydrology of Salt Creek in Northeastern Illinois

    Get PDF
    Salt Creek flows through the metropolitan area of Chicago and into the Des Plaines River. Its urban environment provides multiple sources of contamination, including storm runoff, combined sewer overflow, and wastewater treatment plant discharge. The purpose of this study is to determine how water chemistry changes downstream, whether the presence and levels of metals meet IPCB (Illinois Pollution Control Board) and EPA (Environmental Protection Agency) water quality standards, and how water chemistry changes during periods of storm flow and base flow. The study area consists of 10 sites along a 37 km stretch of Salt Creek. Water samples were taken every other week during June, July, and August of 2014. Six of these sites are located near USGS gaging stations, and corresponding hydrographs were collected to determine hydrological characteristics of the creek such as storm flow and base flow conditions. Hydrographs show Salt Creek as a “flashy” stream, a result of being in an urban area with a large amount of impervious space. Due to its “flashy” behavior, the frequency of flooding and the rate of erosion have increased. Analysis of water samples was done with an X-Ray Fluorescence spectrometer (XRF) to determine concentrations of metals (As, Cu, Fe, Ni, Pb, Zn), and other ions (Ca, Mg, Na). Other measurements included conductivity, temperature, and pH. Concentrations of As and Pb above IPCB limits were found throughout the study area and concentrations of Fe above IPCB standards were found in more downstream regions during both periods of storm flow and base flow. Fe was more often present during periods of storm flow. Concentrations of Cu, Ni, and Zn were generally below IPCB limits. Consistently high concentrations of As, Pb, and Fe were found in samples taken near the city of Elmhurst, and several possible industrial point sources have been identified. Two upstream sites near Rolling Meadows and Elk Grove had conductivity measurements above EPA standards set for the creek. Rolling Meadows also had consistently higher values for Ca, Mg, and Na

    S15RS SGR No. 12 (Parking Audit)

    Get PDF

    Quantum Brownian motion revisited : extensions and applications

    Get PDF
    Quantum Brownian motion represents a paradigmatic model of open quantum system, namely a system which cannot be treated as an isolated one, because of the unavoidable interaction with the surrounding environment. In this case the central system is constituted by a quantum particle, while the bath is made up by a large set of uncoupled harmonic oscillators. In the original model, the interaction between the system and the environment shows a linear dependence on the particle position. Such a particular form corresponds to a homogeneous environment, inducing a damping and diffusion which depends on the state. This is not the most general situation: often the environment shows an inhomogeneous character given by a space-dependent density, involving a non-linearity in the coupling with the central system. One of the main motivations of the thesis is the study of quantum Brownian motion in presence of this non-linear coupling. In particular we focus on the case in which the bath-particle interaction depends quadratically on the position of the latter. There exist several techniques aimed to treat the physics of the model. For instance one could consider the master equation, namely an equation ruling the temporal evolution of the state of the Brownian particle, here represented by its reduced density matrix. We derive such an equation in the Born-Markov regime and look into its stationary solution, studying its configuration in the phase space. For a non-linear quadratic coupling the stationary state may be approximated by means of a Gaussian Wigner function, that experiences genuine position squeezing (i.e. the position variance of the particle takes a value smaller than that associated to the Heisenberg principle, although this is fulfilled) at low temperature and as the coupling with the bath grows. However, the Born-Markov master equation is not the most appropriate tool to investigate the regime in which squeezing occurs, since the underlying hypothesis in general fail at strong coupling and low temperature, leading to violations of the Heisenberg principle. To overcome this problem we recall alternative methods, such as a Lindblad equation, namely a master equation constructed to preserve the positivity of the state at any time, and Heisenberg equations. In particular we employ the Heisenberg equation formalism to explore the behavior of the Bose polaron, i.e. an impurity embedded in a Bose-Einstein condensate. This experimentally feasible system attracted a lot of attention in the last years. We derive the equation of motion of the impurity position showing that it shows the same form of the famous equation derived by Langevin in 1909 in the context of classical Brownian motion. The main difference lies in the fact that the impurity Langevin-like equation for the impurity carries a certain amount of memory effects, while the original one was purely Markovian. An important part of the work is devoted to the solution of the motion equation for the impurity, in order to calculate the position variance that can be measured in experiments. For this goal we distinguish the case in which the impurity is trapped in a harmonic potential and that where it is free of any trap. In the latter case the impurity the position variance exhibits a quadratic dependence on time (i.e. ballistic diffusion), as a consequence of memory effects. When the impurity is trapped in a harmonic potential it approaches an equilibrium state localized in average in the middle of the trap. Here, at low temperature and for certain values of the coupling strength we detect genuine position squeezing. When we consider a gas with a Thomas-Fermi profile we find that such an effect is improved if we make the gas trap tighter. Genuine squeezing plays an important role in the context of quantum metrology and opens a wide range of possibility to design new protocols, such as the quantum thermometerEl movimiento Browniano cuántico es uno de los principales modelos de sistema abierto, es decir un sistema cuyo comportamiento no se puede tratar de manera separada de su entorno. Este modelo describe la física de una partícula acoplada a un entorno de osciladores. En la versión original del modelo la interacción entre la partícula y el entorno manifiesta una dependencia lineal de la posición de ambos los sistemas. Esta forma analítica del acoplamiento corresponde a un entorno homogeneo, asociado a una fricción y una difusión que dependen del estado del sistema. En todo caso, esta no es la situación más general: a menudo el enorno es inhomogeneo, ya que la densidad no es constante, y esto produce una interacción cuya dependencia de la posición de la partícula no es lineal. Una de las motivaciones principales de esta tesis es el estudio del movimiento Browniano cuántico en presencia de acoplamiento non-lineal. En particular, estudiamos el caso de dependencia cuadrática en la posición de la partícula. Existen muchas técnicas para abordar el modelo. Por ejemplo, se puede emplear la master equation, o sea un ecuación que gobierna la evolución en el tiempo del estado de la partícula, representado por el operador densidad reducido. Derivamos esta ecuación en el régimen de Born-Markov, y estudiamos la forma del estado estacionario en el espacio de las fases. Cuando el acoplamiento es cuadrático, este estado se puede aproximar por medio de una función de Wigner de forma Gausiana, cuya peculiaridad es la emergencia de genuine position squeezing (la varianza de la posición adquiere un valor más bajo de el asociado a la cota de Heisenberg) a temperaturas bajas y cuando el acoplamiento crece. Sin embargo, la ecuación de Born-Markov no es la herramienta más adecuada para tratar el régimen en el que detectamos squeezing, porque las hipótesis subyacentes en general no valen a temperaturas bajas e interacción fuerte, llevando a violaciones del principio de Heisenberg. Para superar este obstáculo es posible emplear métodos alternativos, por ejemplo la ecuación de Lindblad, es decir una ecuación cuya forma sirve para preservar la positividad del estado en cualquier instante, y las ecuaciones de Heisenberg. En particular, aplicamos el formalismo de las ecuaciones de Heisenberg para investigar el comportamiento del Bose polaron, o sea una impureza en un condensado de Bose-Einstein. Es un sistema realista experimentalmente que ha atraido mucha atención recientemente. Derivamos la ecuación del movimiento de la impureza y mostramos que su forma analítica es la misma que la de la ecuación de Langevin para el movimiento Browniano clásico. La diferencia principal es que en este caso la dinámica acarrea efectos de memoria. Una parte importante del trabajo consiste en solucionar esta ecuación del movimiento para evaluar la varianza de la posición, que se puede medir en experimentos. Aquí diferenciamos dos casos: cuando la impureza está atrapada en un potencial armónico, y cuando no hay trampa armónica. En el segundo caso la varianza es proporcional al cuadrado del tiempo (difusión balística), como consecuencia de los efectos de memoria. Cuando la impureza está atrapada alcanza un estado de equilibrio localizado en el medio de la trampa. En este estado, bajando la temperatura y considerando valores del coupling más fuertes detectamos otra vez squeezing. Si consideramos un gas con una densidad de Thomas-Fermi se puede comprobar que este efecto se puede optimizar aprietando la trampa del gas. El estudio del squeezing es muy importante en el marco de la metrología cuántica porque permite el desarrollo de nuevo protocolos como el termometro cuántico.Postprint (published version

    Dynamics of Nitrate, Phosphorus, and Suspended Sediment Transport in Two Agricultural Streams in Central Illinois

    Get PDF
    Nutrients such as nitrate and phosphorus are necessary for life, but excessive amounts can be detrimental. Large amounts of nutrients entering bodies of water can lead to hypoxic zones such as the one in the Gulf of Mexico. Nutrients are also problematic in drinking water reservoirs, as high concentrations of nitrate in drinking water can cause health conditions such as blue baby syndrome and high phosphorus concentrations can lead to algal blooms. Suspended sediment leads to reservoir sedimentation, habitat degradation, and is able to transport particulate nutrients. High nutrient and sediment concentrations are a recurring problem in the drinking water reservoirs for the City of Bloomington, Illinois where water is drawn from two reservoirs – Evergreen Lake and Lake Bloomington. The primary source of these nutrients is from agriculture, which dominates the land use in the area. To better understand the dynamics of nitrate, phosphorus, and suspended sediment transported into these reservoirs, water samples were collected at the major tributary for each reservoir - Six Mile Creek for Evergreen Lake and Money Creek for Lake Bloomington. SedEvent, an autosampler system that uses a turbidity threshold sampling method to determine when a rain event is occurring, was used to collect water samples at both tributaries. Water samples were analyzed for nitrate, total phosphorus, and dissolved reactive phosphorus using flow injection analysis (FIA). Samples were analyzed for suspended sediment by filtration and drying of samples. Results showed high nutrient and suspended sediment concentrations and loads in both creeks during or just after rain events, when discharge was high. Nitrate concentrations ranged from 1.58 to 13.3 ppm, total phosphorus concentrations ranged from 11.9 to 1250 ppb, and total suspended sediment concentrations ranged from 2.5 to 4100 ppm. Seasonal patterns in nutrient dynamics were present and, in general, water quality tended to be lower during the spring and higher during the summer. In both Six Mile and Money Creek, the majority (\u3e70%) of phosphorus and total suspended sediment cumulative load occurred during stormflow conditions which accounted for less than 25% of flow time. The majority of nitrate cumulative load at Six Mile Creek occurred during baseflow conditions and at Money Creek, slightly more nitrate was transported during stormflow. Overall, seasonal changes in water quality coincide with agricultural activities, which suggests that alternative management practices may help improve water quality
    corecore