11 research outputs found

    The Impact of Vanilla and Lemon Aromas on Sensory Perception in Plant-Based Yogurts Measured with Static and Dynamic Methods

    Get PDF
    The application of cross-modal interaction is a potential strategy to tackle the challenges related to poor sensory properties, such as thin mouthfeel, in plant-based yogurts. Thus, we aim to study the influence of aroma compounds possibly congruent with sweetness on the perceived sensory profile. Descriptive analysis and temporal dominance of sensations (n = 10 × 4) with a trained panel were conducted with and without a nose clip. One unflavored sample and samples flavored with either lemon or vanilla aromas were included (vanilla; 0.05%; 0.1%; lemon: 0.025%; 0.05%). Odor intensity, thick, sticky, and melting sensation, sweetness, and grain-like flavor were evaluated on an unstructured 10-cm line scale with anchors and reference samples. The results demonstrate how vanilla and lemon aromas suppressed grain-like flavor and enhanced odor intensity and sweetness. The following order was detected among samples in perceived sweetness intensity: unflavored < lemon < vanilla. The two sessions with and without nose clip differed statistically in sweetness, highlighting that the aromas impacted the perceived sweetness but not the mouthfeel in vanilla samples. The study suggests that congruent aromas could modify the perceived sweetness in plant-based yogurts; however, aroma or perceived sweetness does not impact the mouthfeel in plant-based yogurts. While the odor–taste interaction in such products is evident, the study highlights that aroma compounds alone do not modify mouthfeel

    The Impact of Vanilla and Lemon Aromas on Sensory Perception in Plant-Based Yogurts Measured with Static and Dynamic Methods

    Get PDF
    The application of cross-modal interaction is a potential strategy to tackle the challenges related to poor sensory properties, such as thin mouthfeel, in plant-based yogurts. Thus, we aim to study the influence of aroma compounds possibly congruent with sweetness on the perceived sensory profile. Descriptive analysis and temporal dominance of sensations (n = 10 × 4) with a trained panel were conducted with and without a nose clip. One unflavored sample and samples flavored with either lemon or vanilla aromas were included (vanilla; 0.05%; 0.1%; lemon: 0.025%; 0.05%). Odor intensity, thick, sticky, and melting sensation, sweetness, and grain-like flavor were evaluated on an unstructured 10-cm line scale with anchors and reference samples. The results demonstrate how vanilla and lemon aromas suppressed grain-like flavor and enhanced odor intensity and sweetness. The following order was detected among samples in perceived sweetness intensity: unflavored < lemon < vanilla. The two sessions with and without nose clip differed statistically in sweetness, highlighting that the aromas impacted the perceived sweetness but not the mouthfeel in vanilla samples. The study suggests that congruent aromas could modify the perceived sweetness in plant-based yogurts; however, aroma or perceived sweetness does not impact the mouthfeel in plant-based yogurts. While the odor–taste interaction in such products is evident, the study highlights that aroma compounds alone do not modify mouthfeel

    Addressing criticalities in the INFOGEST static in vitro digestion protocol for oleogel analysis

    Get PDF
    The interest on the digestive fate of oleogels, i.e., substitutes for solid fats rich in liquid oil, have pushed re-searchers to use the widely adopted INFOGEST protocol for static in vitro digestion. However, this protocol was originally designed to simulate the digestibility of conventional foods and to accommodate the large fraction of oil in oleogels, researchers have deliberately modified the INFOGEST protocol, inadvertently leading to results difficult to be compared. In this study, we highlighted possible problems that may arise during oleogel simulated digestion such as under-or overestimation of oleogel lipolysis. The effect of oleogel amount, oleogelator type and concentration, and shear applied during digestion on the rate and extent of oleogel digestion was studied. The release of fatty acids during the application of INFOGEST protocol was monitored using the pH-stat method and compared to those analyzed by HPLC-ELSD. Oleogels' structural information was obtained using brightfield, polarized, and fluorescence microscopy, and DSC. We determined that lipolysis of ethylcellulose oleogels follow the "interaction with enzymes and bile salts " pattern, whereas that of wax oleogels follow the "disintegration of oleogel and interaction with enzymes and bile salts ". We also observed that the chemical composition of wax, crystal morphology, and crystal distribution do not alter the lipolysis of oil entrapped inside the wax crystals. We finally recommended a few minimal but fundamental modifications to the INFOGEST protocol to achieve more reliable results from the static in vitro digestion of oleogels and possibly other lipid-based systems.Peer reviewe

    Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols

    Get PDF
    AbstractEthnopharmacological relevance Terminalia laxiflora Engl. & Diels, (Sudanese Arabic name: Darout Ű§Ù„ŰŻŰ±ÙˆŰȘ) and Terminalia brownii Fresen (Sudanese Arabic name: Alshaf ŰŁÙ„ŰŽŰ§Ù) (Combretaceae) are used in Sudanese traditional folk medicine and in other African countries for treatment of infectious diseases, TB and its symptoms, such as cough, bronchitis and chest pain. Aim of study Because of the frequent use of T. laxiflora and T. brownii in African traditional medicine and due to the absence of studies regarding their antimycobacterial potential there was a need to screen extracts of T. laxiflora and T. brownii for their growth inhibitory potential and to study the chemical composition and compounds in growth inhibitory extracts. Materials and methods The plant species were collected in Sudan (Blue Nile Forest, Ed Damazin Forestry areas) and selected according to their uses in traditional medicine for the treatment of bacterial infections, including TB. Eighty extracts and fractions of the stem bark, stem wood, roots, leaves and fruits of T. laxiflora and T. brownii and nine pure compounds present in the active extracts were screened against Mycobacterium smegmatis ATCC 14468 using agar diffusion and microplate dilution methods. Inhibition zones and MIC values were estimated and compared to rifampicin. HPLC-UV/DAD, GC/MS and UHPLC/Q-TOF MS were employed to identify the compounds in the growth inhibitory extracts. Results The roots of T. laxiflora and T. brownii gave the best antimycobacterial effects (IZ 22–27 mm) against Mycobacterium smegmatis. The lowest MIC of 625 ”g/ml was observed for an acetone extract of the root of T. laxiflora followed by methanol and ethyl acetate extracts, both giving MIC values of 1250 ”g/ml. Sephadex LH-20 column chromatography purification of T. brownii roots resulted in low MIC values of 62.5 ”g/ml and 125 ”g/ml for acetone and ethanol fractions, respectively, compared to 5000 ”g/ml for the crude methanol extract. Methyl (S)-flavogallonate is suggested to be the main active compound in the Sephadex LH- 20 acetone fraction, while ellagic acid xyloside and methyl ellagic acid xyloside are suggested to give good antimycobacterial activity in the Sephadex LH-20 ethanol fraction. RP-18 TLC purifications of an ethyl acetate extract of T. laxiflora roots resulted in the enrichment of punicalagin in one of the fractions (Fr5). This fraction gave a five times smaller MIC (500 ”g/ml) than the crude ethyl acetate extract (2500 ”g/ml) and this improved activity is suggested to be mostly due to punicalagin. 1,18-octadec-9-ene-dioate, stigmast-4-en-3-one, 5α-stigmastan-3,6-dione, triacontanol, sitostenone and ÎČ-sitosterol were found in antimycobacterial hexane extracts of the stem bark of both studied species. Of these compounds, 1,18-octadec-9-ene-dioate, stigmast-4-en-3-one, 5α-stigmastan-3,6-dione, triacontanol, sitostenone have not been previously identified in T. brownii and T. laxiflora. Moreover, both plant species contained friedelin, betulinic acid, ÎČ-amyrine and two unknown oleanane-type triterpenoids. Of the listed compounds, friedelin, triacontanol and sitostenone gave a MIC of 250 ”g/ml against M. smegmatis, whereas stigmasterol and ÎČ-sitosterol gave MIC values of 500 ”g/ml. Conclusions Our results show that T. laxiflora and T. brownii contain antimycobacterial compounds of diverse polarities and support the traditional uses of various parts of T. laxiflora and T.brownii as decoctions for treatment of tuberculosis. Further investigations are warranted to explore additional (new) antimycobacterial compounds in the active extracts of T. laxiflora and T. brownii.Peer reviewe

    Flavor challenges in extruded plant-based meat alternatives: A review

    Get PDF
    Demand for plant-based meat alternatives has increased in recent years due to concerns about health, ethics, the environment, and animal welfare. Nevertheless, the market share of plant-based meat alternatives must increase significantly if they are to support sustainable food production and consumption. Flavor is an important limiting factor of the acceptability and marketability of plant-based meat alternatives. Undesirable chemosensory perceptions, such as a beany flavor, bitter taste, and astringency, are often associated with plant proteins and products that use them. This study reviewed 276 articles to answer the following five research questions: (1) What are the volatile and nonvolatile compounds responsible for off-flavors? (2) What are the mechanisms by which these flavor compounds are generated? (3) What is the influence of thermal extrusion cooking (the primary structuring technique to transform plant proteins into fibrous products that resemble meat in texture) on the flavor characteristics of plant proteins? (4) What techniques are used in measuring the flavor properties of plant-based proteins and products? (5) What strategies can be used to reduce off-flavors and improve the sensory appeal of plant-based meat alternatives? This article comprehensively discusses, for the first time, the flavor issues of plant-based meat alternatives and the technologies available to improve flavor and, ultimately, acceptability.Peer reviewe

    The flavor of faba bean ingredients and extrudates : Chemical and sensory properties

    Get PDF
    Faba bean, processed into ingredients (flour, protein concentrate, protein isolate), can be extruded to meat al-ternatives with a fibrous texture. Despite its importance for consumer acceptance, not enough is known about the flavor of faba bean ingredients nor about the chemical and sensory changes caused by high-moisture extrusion. Therefore, the aim of this work was to describe the flavor of faba bean ingredients and the corresponding extrudates and to understand how their composition affects the perception of sensory attributes. Firstly, faba bean protein ingredients and extrudates were characterized for lipid-degrading enzymatic activities, flavor precursors, and volatile and non-volatile flavor-active compounds. Secondly, sensory profiling was conducted. Thirdly, partial least squares regression was applied to understand the relationship between chemical and sen-sory data. This study showed that faba bean protein concentrate had the strongest taste and aftertaste (respec-tively 7 and 6, on a 0-10 intensity scale), bitterness (6-7), and pea flavor and odor (respectively 6 and 5), whereas faba bean protein isolate had the strongest cereal flavor (4) and odor (4), and off-flavor (2) and off-odor (3). Faba bean flour had the mildest flavor. High-moisture extrusion brought several chemical changes to the ingredients, including the formation of several volatile compounds and inactivation of lipid-degrading enzymes. Only traces of tannins were found in extrudates. The presence of free phenolics, vicine, and convicine was linked to strong taste and aftertaste, bitterness, and a drying sensation of the mouth, whereas lipid oxidation products were related to pea, cereal, and off-odors and flavors.Peer reviewe

    The flavor of faba bean ingredients and extrudates: Chemical and sensory properties

    Get PDF
    Faba bean, processed into ingredients (flour, protein concentrate, protein isolate), can be extruded to meat al-ternatives with a fibrous texture. Despite its importance for consumer acceptance, not enough is known about the flavor of faba bean ingredients nor about the chemical and sensory changes caused by high-moisture extrusion. Therefore, the aim of this work was to describe the flavor of faba bean ingredients and the corresponding extrudates and to understand how their composition affects the perception of sensory attributes. Firstly, faba bean protein ingredients and extrudates were characterized for lipid-degrading enzymatic activities, flavor precursors, and volatile and non-volatile flavor-active compounds. Secondly, sensory profiling was conducted. Thirdly, partial least squares regression was applied to understand the relationship between chemical and sen-sory data. This study showed that faba bean protein concentrate had the strongest taste and aftertaste (respec-tively 7 and 6, on a 0-10 intensity scale), bitterness (6-7), and pea flavor and odor (respectively 6 and 5), whereas faba bean protein isolate had the strongest cereal flavor (4) and odor (4), and off-flavor (2) and off-odor (3). Faba bean flour had the mildest flavor. High-moisture extrusion brought several chemical changes to the ingredients, including the formation of several volatile compounds and inactivation of lipid-degrading enzymes. Only traces of tannins were found in extrudates. The presence of free phenolics, vicine, and convicine was linked to strong taste and aftertaste, bitterness, and a drying sensation of the mouth, whereas lipid oxidation products were related to pea, cereal, and off-odors and flavors

    Flavor challenges in extruded plant-based meat alternatives: A review

    Get PDF
    Demand for plant-based meat alternatives has increased in recent years due to concerns about health, ethics, the environment, and animal welfare. Nevertheless, the market share of plant-based meat alternatives must increase significantly if they are to support sustainable food production and consumption. Flavor is an important limiting factor of the acceptability and marketability of plant-based meat alternatives. Undesirable chemosensory perceptions, such as a beany flavor, bitter taste, and astringency, are often associated with plant proteins and products that use them. This study reviewed 276 articles to answer the following five research questions: (1) What are the volatile and nonvolatile compounds responsible for off-flavors? (2) What are the mechanisms by which these flavor compounds are generated? (3) What is the influence of thermal extrusion cooking (the primary structuring technique to transform plant proteins into fibrous products that resemble meat in texture) on the flavor characteristics of plant proteins? (4) What techniques are used in measuring the flavor properties of plant-based proteins and products? (5) What strategies can be used to reduce off-flavors and improve the sensory appeal of plant-based meat alternatives? This article comprehensively discusses, for the first time, the flavor issues of plant-based meat alternatives and the technologies available to improve flavor and, ultimately, acceptability

    Spruce galatoglucomannan stabilized emulsions are potential carriers for bioactive compounds

    No full text
    Meeting abstract: 318201

    Masking off-flavors of faba bean protein concentrate and extrudate: The role of in situ and in vitro produced dextran

    No full text
    This study produced dextran both in situ by fermentation with Weissella confusa A16 and in vitro by isolated W. confusa A16 dextransucrase enzyme, and investigated its effects on the flavor properties of faba bean protein concentrate (FPC) and the corresponding extrudates prepared by high moisture extrusion. Descriptive sensory profiling revealed that the FPC and extrudates had an intense pea odor and flavor, bitter taste, and astringency. Partial least squares regression analysis suggested that the pea flavor was related to the presence of lipid-oxidation products such as hexanal, heptanal, and nonanal, whereas the bitterness and astringency were likely linked to vicine, convicine, condensed tannins, and arginine. Fermentation under optimized conditions resulted in low acid formation and sufficient dextran production (1.2% end-product basis), which was effective in masking pea and bitter off-notes and enhancing pleasant flavors in FPC (sweet and fruity) and extrudates (sweet and umami). The sweetness was related to fructose produced during fermentation, and the fruity odor was linked to the generated isoamyl isovalerate and ethyl acetate. The masking effect on pea and bitter off-notes was further confirmed by adding enzymatically synthesized dextran in FPC (1.2% dextran) and extrudates (1% dextran). Overall, fermentation with W. confusa A16 or addition of the enzymatically produced dextran showed potential for masking off-flavors of faba bean-based ingredients and extruded meat alternatives. Furthermore, the fermentation method was associated with nutritional benefits (reduction of anti-nutritional factors, e.g., condensed tannins and verbascose) and the generation of flavor compounds/precursors (e.g., esters and free amino acids)
    corecore