324 research outputs found

    Optical pumping NMR in the compensated semiconductor InP:Fe

    Full text link
    The optical pumping NMR effect in the compensated semiconductor InP:Fe has been investigated in terms of the dependences of photon energy (E_p), helicity (sigma+-), and exposure time (tau_L) of infrared lights. The {31}P and {115}In signal enhancements show large sigma+- asymmetries and anomalous oscillations as a function of E_p. We find that (i) the oscillation period as a function of E_p is similar for {31}P and {115}In and almost field independent in spite of significant reduction of the enhancement in higher fields. (ii) A characteristic time for buildup of the {31}P polarization under the light exposure shows strong E_p-dependence, but is almost independent of sigma+-. (iii) The buildup times for {31}P and {115}In are of the same order (10^3 s), although the spin-lattice relaxation times (T_1) are different by more than three orders of magnitude between them. The results are discussed in terms of (1) discrete energy spectra due to donor-acceptor pairs (DAPs) in compensated semiconductors, and (2) interplay between {31}P and dipolar ordered indium nuclei, which are optically induced.Comment: 8 pages, 6 figures, submitted to Physical Review

    Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source

    Get PDF
    Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part

    Voltage control of nuclear spin in ferromagnetic Schottky diodes

    Full text link
    We employ optical pump-probe spectroscopy to investigate the voltage dependence of spontaneous electron and nuclear spin polarizations in hybrid MnAs/n-GaAs and Fe/n-GaAs Schottky diodes. Through the hyperfine interaction, nuclear spin polarization that is imprinted by the ferromagnet acts on conduction electron spins as an effective magnetic field. We demonstrate tuning of this nuclear field from <0.05 to 2.4 kG by varying a small bias voltage across the MnAs device. In addition, a connection is observed between the diode turn-on and the onset of imprinted nuclear polarization, while traditional dynamic nuclear polarization exhibits relatively little voltage dependence.Comment: Submitted to Physical Review B Rapid Communications. 15 pages, 3 figure

    An all silicon quantum computer

    Get PDF
    A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement, RF control, and long decoherence times, but it allows for more qubits and improved initialization.Comment: ReVTeX 4, 5 pages, 2 figure

    Production studies, transformations in children’s television and the global turn

    Get PDF
    Moving away from the dominant discourse of US experience, this article looks at how the production of local content for children remains a central issue in many parts of the world, in spite of the growth of transnational media and the apparent abundance of content for children worldwide. Drawing on a pre-summit workshop on Children’s Content at the Core of Public Service Media, held at the 2014 World Summit on Media for Children, it considers the lack of academic perspectives on production, before exploring with workshop participants the regulatory and funding frameworks for quality children’s content, and the conditions for their successful implementation. There is a continuing problem about producing sustainable children’s content, and western models are not always the most appropriate at providing solutions, which need to be nuanced and tailored to different national, regional and local contexts

    Theorizing media production: the poverty of political economy

    Get PDF
    This article argues that the Political Economy of Communication (PEC) has generally failed to develop theories of media production. Such theory as exists has been heavily influenced by accounts of mass production and flexible specialization in Hollywood. Hollywood film production has been viewed as paradigmatic of media production in general, in the same way as Ford was for manufacturing, and these theories continue to influence accounts of production across media and cultural industries. The article tests the mass production/flexible specialization paradigm against both the evidence of the Hollywood case and Ford’s mass production system. An alternative paradigm, the theory of craft media production, is also examined. The article then attempts to show how applying organization theory and media economics can provide a more convincing explanation of media production and of the Hollywood case. Finally, the article briefly attempts to show how we might develop rich theoretical explanations of media production by exploring the relationships between economic, organizational and media-specific cultural elements

    We All Know How, Don’t We? On the Role of Scrum in IT-Offshoring

    Get PDF
    Part 2: Creating Value through Software DevelopmentInternational audienceOffshoring in the IT-industry involves dual interactions between a mother company and an external supplier, often viewed with an implicit perspective from the mother company. This article review general off shoring and IT offshoring literature, focusing on the proliferation of a globally available set of routines; Scrum and Agile. Two cases are studied; a small company and short process and a large mother company with a long process. The interactions of the set ups shows that global concepts like Scrum and Agile are far from a common platform. The “well known” concepts are locally shaped and the enterprises have mixed experiences

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore