521 research outputs found

    Changes in metabolic phenotypes of Plasmodium falciparum in vitro cultures during gametocyte development.

    Get PDF
    BACKGROUND: Gametocytes are the Plasmodium life stage that is solely responsible for malaria transmission. Despite their important role in perpetuating malaria, gametocyte differentiation and development is poorly understood. METHODS: To shed light on the biochemical changes that occur during asexual and gametocyte development, metabolic characterization of media from in vitro intra-erythrocytic Plasmodium falciparum cultures was performed throughout gametocyte development by applying 1H nuclear magnetic spectroscopy, and using sham erythrocyte cultures as controls. Spectral differences between parasite and sham cultures were assessed via principal component analyses and partial-least squares analyses, and univariate statistical methods. RESULTS: Clear parasite-associated changes in metabolism were observed throughout the culture period, revealing differences between asexual parasites and gametocyte stages. With culture progression and development of gametocytes, parasitic release of the glycolytic end products lactate, pyruvate, alanine, and glycerol, were found to be dramatically reduced whilst acetate release was greatly increased. Also, uptake of lipid moieties CH(2), CH(3), and CH = CH-CH(2)-CH(2) increased throughout gametocyte development, peaking with maturity. CONCLUSIONS: This study uniquely presents an initial characterization of the metabolic exchange between parasite and culture medium during in vitro P. falciparum gametocyte culture. Results suggest that energy metabolism and lipid utilization between the asexual stages and gametocytes is different. This study provides new insights for gametocyte-specific nutritional requirements to aid future optimization and standardization of in vitro gametocyte cultivation, and highlights areas of novel gametocyte cell biology that deserve to be studied in greater detail and may yield new targets for transmission-blocking drugs

    Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas

    Get PDF
    We present time-resolved spectroscopic measurements of Rydberg-Rydberg interactions in an ultracold gas, revealing the pair dynamics induced by long-range van der Waals interactions between the atoms. By detuning the excitation laser, a specific pair distribution is prepared. Penning ionization on a microsecond timescale serves as a probe for the pair dynamics under the influence of the attractive long-range forces. Comparison with a Monte Carlo model not only explains all spectroscopic features but also gives quantitative information about the interaction potentials. The results imply that the interaction-induced ionization rate can be influenced by the excitation laser. Surprisingly, interaction-induced ionization is also observed for Rydberg states with purely repulsive interactions

    Cholinergic modulation of epileptiform activity in the developing rat neocortex

    Get PDF
    The effects of carbachol on picrotoxin-induced epileptiform activity and membrane properties of neurons in the developing rat neocortex were examined in an in vitro slice preparation. Intracellular recordings were obtained in layer II–III neurons of slices prepared from rats 9–21 days of age. Epileptiform activity in 9- to 14-day-olds consisted of a sharply rising, sustained (10–30 s) membrane depolarization with superimposed action potentials. Bath application of carbachol (5–50 μM) raised the threshold for evoking epileptiform activity but, when such responses were evoked, their underlying depolarizations were increased in amplitude. Orthodromic stimulation in slices from 15- to 21-day-old animals evoked a prolonged epileptiform burst response that triggered an episode of spreading depression (SD). Carbachol reduced epileptiform responses and suppressed the occurrence of SD. It did not significantly affect the resting membrane potential or the height of the action potential but decreased the rheobase current needed to evoke an action potential and increased the input resistance. All effects of carbachol were antagonized by atropine (1 μM). These results indicate that carbachol has both pre- and postsynaptic effects in the developing neocortex and can significantly modulate neuronal excitability in the immature nervous system

    Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America

    Get PDF
    Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new genus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration

    Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions

    Get PDF
    Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996)10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9MeVu-1Pb56+ ions, and laser-generated carbon ion beams of 0.045 to 0.5MeVu-1, passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.Fil: Lamour, E.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Fainstein, Pablo Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Centro AtĂłmico Bariloche; ArgentinaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Prigent, C.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Ramirez, C. A.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de FĂ­sica de Rosario. Universidad Nacional de Rosario. Instituto de FĂ­sica de Rosario; ArgentinaFil: Rozet, J. P.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Trassinelli, M.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Vernhet, D.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci

    Modulating the phase transition temperature of giant magnetocaloric thin films by ion irradiation

    Full text link
    Magnetic refrigeration based on the magnetocaloric effect at room temperature is one of the most attractive alternative to the current gas compression/expansion method routinely employed. Nevertheless, in giant magnetocaloric materials, optimal refrigeration is restricted to the narrow temperature window of the phase transition (Tc). In this work, we present the possibility of varying this transition temperature into a same giant magnetocaloric material by ion irradiation. We demonstrate that the transition temperature of iron rhodium thin films can be tuned by the bombardment of ions of Ne 5+ with varying fluences up to 10 14 ions cm --2 , leading to optimal refrigeration over a large 270--380 K temperature window. The Tc modification is found to be due to the ion-induced disorder and to the density of new point-like defects. The variation of the phase transition temperature with the number of incident ions opens new perspectives in the conception of devices using giant magnetocaloric materials

    Rabi oscillations between ground and Rydberg states and van der Waals blockade in a mesoscopic frozen Rydberg gas

    Full text link
    We present a detailed analysis of our recent observation of synchronous Rabi oscillations between the electronic ground state and Rydberg states in a mesoscopic ensemble containing roughly 100 ultracold atoms [M. Reetz-Lamour \textit{et al.}, submitted, arXiv:0711.4321]. The mesoscopic cloud is selected out of a sample of laser-cooled Rb atoms by optical pumping. The atoms are coupled to a Rydberg state with principal quantum number around 30 by a two-photon scheme employing flat-top laser beams. The influence of residual spatial intensity fluctuations as well as sources of decoherence such as redistribution to other states, radiative lifetime, and laser bandwidth are analysed. The results open up new possibilities for the investigation of coherent many-body phenomena in dipolar Rydberg gases. As an example we demonstrate the van der Waals blockade, a variant of the dipole blockade, for a mesoscopic atom sample

    Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source

    Full text link
    We have performed a systematic study of the Bremsstrahlung emission from the electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance Ion Source. The electronic spectral temperature and the product of ionic and electronic densities of the plasma are measured by analyzing the Bremsstrahlung spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the injected power. Within our uncertainty, we find an average temperature of ? 48 keV above 100W, with a weak dependency on the injected power and gas composition. Charge state distributions of extracted ion beams have been determined as well, providing a way to disentangle the ionic density from the electronic density. Moreover X-ray emission from highly charged argon ions in the plasma has been observed with a high-resolution mosaic crystal spectrometer, demonstrating the feasibility for high-precision measurements of transition energies of highly charged ions, in particular of the magnetic dipole (M1) transition of He-like of argon ions
    • …
    corecore