52 research outputs found

    Mechanisms of Acquired Androgen Independence during Arsenic-Induced Malignant Transformation of Human Prostate Epithelial Cells

    Get PDF
    BACKGROUND: Prostate cancer progression often occurs with overexpression of growth factors and receptors, many of which engage the Ras/mitogen-activated protein MAP kinase (MAPK) pathway. OBJECTIVES: In this study we used arsenic-transformed human prostate epithelial cells, which also show androgen-independent growth, to study the possibility that chronic activation of Ras/MAPK signaling may contribute to arsenic-induced prostate cancer progression. METHODS: Control and chronic arsenic–transformed prostate epithelial cells (CAsE-PE) were compared for Ras/MAPK signaling capacities using reverse transcription–polymerase chain reaction and Western blot analyses. RESULTS: We found activation of HER-2/neu oncogene in transformed CAsE-PE cells, providing molecular evidence of androgen independence in the transformed cells. CAsE-PE cells displayed constitutively increased expression of unmutated K-Ras (6-fold), and the downstream MAP kinases A-Raf and B-Raf (2.2-fold and 3.2-fold, respectively). There was also increased expression of phosphorylated MEK1/2 and Elk1 in the transformant cells. The MEK1/2 inhibitor, U0126, blocked PSA overexpression in CAsE-PE cells. CONCLUSION: Thus, arsenic-induced malignant transformation and acquired androgen independence are linked to Ras signaling activation in human prostate epithelial cells. Chronic activation of this pathway can sensitize the androgen receptor to subphysiologic levels of androgen. This may be important in arsenic carcinogenesis and provide a mechanism that may be common for prostate cancer progression driven by diverse agents

    Carcinogenicity of consumption of red and processed meat

    Get PDF
    In October, 2015, 22 scientists from ten countries met at the International Agency for Research on Cancer (IARC) in Lyon, France, to evaluate the carcinogenicity of the consumption of red meat and processed meat. These assessments will be published in volume 114 of the IARC Monographs

    Carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy

    Get PDF
    The complete evaluation of the carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy will be published in Volume 131 of the IARC Monographs.[Excerpt] In March, 2022, a Working Group of 31 scientists from 13 countries met remotely at the invitation of the International Agency for Research on Cancer (IARC) to finalise their evaluation of the carcinogenicity of nine agents: cobalt metal (without tungsten carbide or other metal alloys), soluble cobalt(II) salts, cobalt(II) oxide, cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, trivalent antimony, pentavalent antimony, and weapons-grade tungsten (with nickel and cobalt) alloy. For cobalt metal and the cobalt compounds, particles of all sizes were included in the evaluation. These assessments will be published in Volume 131 of the IARC Monographs.1 Cobalt metal and soluble cobalt(II) salts were classified as “probably carcinogenic to humans” (Group 2A) based on “sufficient” evidence for cancer in experimental animals and “strong” mechanistic evidence in human primary cells. Cobalt(II) oxide and weapons-grade tungsten alloy were classified as “possibly carcinogenic to humans” (Group 2B) based on “sufficient” evidence in experimental animals. Trivalent antimony was classified as “probably carcinogenic to humans” (Group 2A), based on “limited” evidence for cancer in humans, “sufficient” evidence for cancer in experimental animals, and “strong” mechanistic evidence in human primary cells and in experimental systems. Cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, and pentavalent antimony were each evaluated as “not classifiable as to its carcinogenicity to humans” (Group 3).[...

    The IARC Monographs: Updated procedures for modern and transparent evidence synthesis in cancer hazard identification

    Get PDF
    The Monographs produced by the International Agency for Research on Cancer (IARC) apply rigorous procedures for the scientific review and evaluation of carcinogenic hazards by independent experts. The Preamble to the IARC Monographs, which outlines these procedures, was updated in 2019, following recommendations of a 2018 expert Advisory Group. This article presents the key features of the updated Preamble, a major milestone that will enable IARC to take advantage of recent scientific and procedural advances made during the 12 years since the last Preamble amendments. The updated Preamble formalizes important developments already being pioneered in the Monographs Programme. These developments were taken forward in a clarified and strengthened process for identifying, reviewing, evaluating and integrating evidence to identify causes of human cancer. The advancements adopted include strengthening of systematic review methodologies; greater emphasis on mechanistic evidence, based on key characteristics of carcinogens; greater consideration of quality and informativeness in the critical evaluation of epidemiological studies, including their exposure assessment methods; improved harmonization of evaluation criteria for the different evidence streams; and a single-step process of integrating evidence on cancer in humans, cancer in experimental animals and mechanisms for reaching overall evaluations. In all, the updated Preamble underpins a stronger and more transparent method for the identification of carcinogenic hazards, the essential first step in cancer prevention

    ROLE DES HORMONES DANS LA DETOXIFICATION AU NIVEAU DU TESTICULE (ACTION SUR L'EXPRESSION DE LA GLUTATHION S-TRANSFERASE ALPHA (GST ALPHA) (DOCTORAT : SCIENCES))

    No full text
    LYON1-BU Santé (693882101) / SudocPARIS-BIUM (751062103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF
    • 

    corecore