2,477 research outputs found

    A triple-GEM telescope for the TOTEM experiment

    Get PDF
    The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier (GEM) technology for its T2 telescope which will provide charged track reconstruction in the rapidity range 5.3<|eta|<6.5 and a fully inclusive trigger for diffractive events. GEMs are gas-filled detectors that have the advantageous decoupling of the charge amplification structure from the charge collection and readout structure. Furthermore, they combine good spatial resolution with very high rate capability and a good resistance to radiation. Results from a detailed T2 GEM simulation and from laboratory tests on a final design detector performed at CERN are presented.Comment: To appear in the proceedings of 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06), Siena, Italy, October 1-5 200

    Pollination benefits are maximized at intermediate nutrient levels

    Get PDF
    Yield production in flowering crops depends on both nutrient availability and pollination, but their relative roles and potential interactions are poorly understood. We measured pollination benefits to yield in sunflower, combining a gradient in insect pollination (0, 25, 50, 100%) with a continuous gradient in nitrogen (N) fertilization (from 0 to 150 kg N ha-1) in an experiment under realistic soil field conditions. We found that pollination benefits to yield were maximized at intermediate levels of N availability, bolstering yield by approximately 25% compared with complete pollinator exclusion. Interestingly, we found little decrease in yield when insect visits were reduced by 50%, indicating that the incremental contribution of pollination by insects to yield is greater when the baseline pollination service provision is very low. Our findings provide strong evidence for interactive, nonlinear effects of pollination and resource availability on seed production. Our results support ecological intensification as a promising strategy for sustainable management of agroecosystems. In particular, we found optimal level of pollination to potentially compensate for lower N applications

    Pollination benefits are maximized at intermediate nutrient levels

    Get PDF
    none3noYield production in flowering crops depends on both nutrient availability and pollination, but their relative roles and potential interactions are poorly understood. We measured pollination benefits to yield in sunflower, combining a gradient in insect pollination (0, 25, 50, 100%) with a continuous gradient in nitrogen (N) fertilization (from 0 to 150 kg N ha−1) in an experiment under realistic soil field conditions. We found that pollination benefits to yield were maximized at intermediate levels of N availability, bolstering yield by approximately 25% compared with complete pollinator exclusion. Interestingly, we found little decrease in yield when insect visits were reduced by 50%, indicating that the incremental contribution of pollination by insects to yield is greater when the baseline pollination service provision is very low. Our findings provide strong evidence for interactive, nonlinear effects of pollination and resource availability on seed production. Our results support ecological intensification as a promising strategy for sustainable management of agroecosystems. In particular, we found optimal level of pollination to potentially compensate for lower N applications.mixedTamburini, Giovanni; Lami, Francesco; Marini, LorenzoTamburini, Giovanni; Lami, Francesco; Marini, Lorenz

    Probabilistic Distillation of Quantum Coherence

    Get PDF
    © 2018 American Physical Society. The ability to distill quantum coherence is pivotal for optimizing the performance of quantum technologies; however, such a task cannot always be accomplished with certainty. Here we develop a general framework of probabilistic distillation of quantum coherence in a one-shot setting, establishing fundamental limitations for different classes of free operations. We first provide a geometric interpretation for the maximal success probability, showing that under maximally incoherent operations (MIO) and dephasing-covariant incoherent operations (DIO) the problem can be simplified into efficiently computable semidefinite programs. Exploiting these results, we find that DIO and its subset of strictly incoherent operations have equal power in the probabilistic distillation of coherence from pure input states, while MIO are strictly stronger. We then prove a fundamental no-go result: Distilling coherence from any full-rank state is impossible even probabilistically. We further find that in some conditions the maximal success probability can vanish suddenly beyond a certain threshold in the distillation fidelity. Finally, we consider probabilistic coherence distillation assisted by a catalyst and demonstrate, with specific examples, its superiority to the unassisted and deterministic cases

    A determination of the average up-down, strange and charm quark masses from Nf=2+1+1N_f=2+1+1

    Get PDF
    We present a lattice QCD determination of the average up-down, strange and charm quark masses based on simulations performed by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2 + 1 + 1 dynamical fermions. We simulated at three different values of the lattice spacing, the smallest being approximately 0.06fm0.06fm, and with pion masses as small as 210MeV210 \text{MeV}. Our results are: mud(2GeV)=3.70(17)MeVm_{ud}(2\text{GeV})=3.70(17)\text{MeV}, ms(2GeV)=99.2(3.9)MeVm_s(2\text{GeV})=99.2(3.9)\text{MeV}, mc(mc)=1.350(49)GeVm_c(m_c)=1.350(49)\text{GeV}, ms/mud=26.64(30)m_s/m_{ud}=26.64(30) and mc/ms=11.65(12)m_c/m_s=11.65(12)

    Mass of the b-quark and B-decay constants from Nf=2+1+1 twisted-mass Lattice QCD

    Get PDF
    We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up/down, strange and charm, at three values of the lattice spacing (a ~ 0.06 - 0.09 fm) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read: mb(MSbar, mb) = 4.26(10) GeV, mb/mc = 4.42(8), mb/ms = 51.4(1.4), fBs = 229(5) MeV, fB = 193(6) MeV, fBs/fB = 1.184(25) and (fBs/fB)/(fK/fpi) = 0.997(17).Comment: Version to appear in PRD. Added comments to simulation setup and error budget discussion. 1+20 pages, 9 figure

    Entanglement-Saving Channels

    Full text link
    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ\psi is said to be ES if its powers ψn\psi^n are not entanglement-breaking for all integers nn. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps which, not only preserve entanglement for all finite nn, but which also sustain an explicitly not null level of entanglement in the asymptotic limit~n→∞n\rightarrow \infty. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.Comment: 26 page

    Leptonic decay constants fK, fD and fDs with Nf = 2+1+1 twisted-mass lattice QCD

    Full text link
    We present a lattice QCD calculation of the pseudoscalar decay constants fK, fD and fDs performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their values in the real world. The simulations are based on a unitary setup for the two light mass-degenerate quarks and on a mixed action approach for the strange and charm quarks. We use data simulated at three different values of the lattice spacing in the range 0.06 - 0.09 fm and at pion masses in the range 210 - 450 MeV. Our main results are: fK+ / fpi+ = 1.184 (16), fK+ = 154.4 (2.0) MeV, which incorporate the leading strong isospin breaking correction due to the up- and down-quark mass difference, and fK = 155.0 (1.9) MeV, fD = 207.4 (3.8) MeV, fDs = 247.2 (4.1) MeV, fDs / fD = 1.192 (22) and (fDs / fD) / (fK / fpi) = 1.003 (14) obtained in the isospin symmetric limit of QCD. Combined with the experimental measurements of the leptonic decay rates of kaon, pion, D- and Ds-mesons our results lead to the following determination of the CKM matrix elements: |Vus| = 0.2269 (29), |Vcd| = 0.2221 (67) and |Vcs| = 1.014 (24). Using the latest value of |Vud| from superallowed nuclear beta decays the unitarity of the first row of the CKM matrix is fulfilled at the permille level.Comment: 20 pp., 4 figures; revised version to appear in PRD; improved calculation of IB effects for fK+; minor changes in the final values. arXiv admin note: text overlap with arXiv:1403.450
    • …
    corecore