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The ability to distill quantum coherence is pivotal for optimizing the performance of quantum technologies;
however, such a task cannot always be accomplished with certainty. Here we develop a general framework of
probabilistic distillation of quantum coherence in a one-shot setting, establishing fundamental limitations for
different classes of free operations. We first provide a geometric interpretation for the maximal success probabil-
ity, showing that under maximally incoherent operations (MIO) and dephasing-covariant incoherent operations
(DIO) the problem can be simplified into efficiently computable semidefinite programs. Exploiting these results,
we find that DIO and its subset of strictly incoherent operations (SIO) have equal power in probabilistic distil-
lation of coherence from pure input states, while MIO are strictly stronger. We then prove a fundamental no-go
result: distilling coherence from any full-rank state is impossible even probabilistically. We further find that in
some conditions the maximal success probability can vanish suddenly beyond a certain threshold in the distil-
lation fidelity. Finally, we consider probabilistic coherence distillation assisted by a catalyst and demonstrate,
with specific examples, its superiority to the unassisted and deterministic cases.

Quantum coherence is a physical resource that is essen-
tial for various tasks in quantum computing (e.g. Deutsch-
Jozsa algorithm [1]), cryptography (e.g. quantum key distri-
bution [2]), information processing (e.g. quantum state merg-
ing [3], state redistribution [4] and channel simulation [5]),
thermodynamics [6], metrology [7], and quantum biology [8].
A series of efforts have been devoted to building a resource
framework of coherence in recent years [8–12], character-
izing in particular the state transformations and operational
uses of coherence in fundamental resource manipulation pro-
tocols [3, 13–17]. As in any physical resource theory, a central
problem of the resource theory of quantum coherence is distil-
lation: the process of extracting canonical units of coherence,
as represented by the maximally coherent state |Ψm〉, from a
given quantum state using a choice of free operations.

The usual asymptotic approach to studying the problem in
quantum information theory is to assume that there is an un-
bounded number of independent and identically distributed
copies of a quantum state available and that the transformation
error asymptotically goes to zero [13, 18–20]. In reality, these
assumptions become unphysical due to our limited access to
a finite number of copies of a given state, making it neces-
sary to look at non-asymptotic regimes [16, 17]. Furthermore,
since loss and decoherence severely restrict our ability to ma-
nipulate large quantum systems, one needs to allow for a finite
error in the distillation protocol. In this respect, deterministic
protocols such as those studied in [17] may be insufficient to
reach a target fidelity for desired applications. It is thus of im-
portance to consider a more general probabilistic framework,
in which the distillation will succeed only with some proba-
bility. Here, the allowed error can be characterized by two
key parameters: the success probability of the one-shot distil-
lation process, and the fidelity between the extracted state and
the target state |Ψm〉. To have a systematic understanding of
coherence distillation with finite resources and be able to im-
plement practical schemes for this task, it is crucial to describe

and optimize the interplay between these two parameters.

In this Letter, we develop the framework of probabilistic
coherence distillation, characterizing the relation between the
maximum success probability and the fidelity of distillation in
the one-shot setting. We describe qualitative and quantitative
aspects of this task under several representative choices of free
operations, providing insights into their fundamental limita-
tions and capabilities for coherence manipulation. In partic-
ular, we achieve a complete characterization of probabilistic
coherence distillation with pure input states. The main results
of our study are presented as Theorems in the following, with
all proofs delegated to the Supplemental Material [21]. Before
proceeding, we note that, previously, the framework of proba-
bilistic state transformations has been employed in character-
izing entanglement distillation [18, 26–29] as well as related
settings in the resource theory of thermodynamics [30], and
recently found use in the investigation of practical entangle-
ment distillation schemes [31]. Our work fills an important
gap in the literature by establishing the probabilistic toolbox
for the key resource of quantum coherence.

Framework of probabilistic coherence distillation.—The
free states in the resource theory of quantum coherence, so-
called incoherent states I, are the density operators which are
diagonal in a given reference orthonormal basis {|i〉}. We will
use ∆(·) :=

∑
i |i〉〈i | · |i〉〈i | to denote the diagonal map (com-

pletely dephasing channel) in this basis. The resource the-
ory of coherence is known not to admit a unique physically-
motivated choice of allowed free operations [8, 13, 25, 32, 33],
necessitating the investigation of operational capabilities of
several different classes of maps. The relevant choices of free
operations that we will focus on are: maximally incoherent
operations (MIO) [9], defined to be all operations E such that
E(ρ) ∈ I for every ρ ∈ I; dephasing-covariant incoher-
ent operations (DIO) [25, 32], which are maps E such that
[∆, E] = 0, or equivalently E(|i〉〈i |) ∈ I and ∆(E(|i〉〈 j |)) =

0, ∀i , j; incoherent operations (IO) [12], which admit a set
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of incoherent Kraus operators {Kl} such that
KlρK

†
l

Tr KlρK
†
l

∈ I
for all l and ρ ∈ I; as well as strictly incoherent operations
(SIO) [13], which are operations such that both {Kl} and {K†

l
}

are sets of incoherent operators. In particular, MIO is the
largest possible choice of free operations in coherence theory,
while SIO can be regarded as the smallest class which satis-
fies desirable resource theoretic criteria [8, 25], leading to the
hierarchy SIO ( IO ( MIO, SIO ( DIO ( MIO [25].

The basic task of probabilistic distillation can be under-
stood as follows. For any given quantum state ρ held by a sin-
gle party A, we aim to transform this state to an m-dimensional
maximally coherent state (target state) |Ψm〉 := m−1/2 ∑m

i=1 |i〉
with high fidelity. A single-bit classical flag register L is used
to indicate whether the transformation succeeds or not. If the
flag is found in the 0 state, the distillation process has suc-
ceeded and the output state σ has fidelity at least 1 − ε with
the target state. Otherwise, the process has failed, and we dis-
card the unwanted output state ω. Our goal is to maximize
the success probability while keeping the transformation infi-
delity within some tolerance ε.

Formally, for any triplet (ρ,m, ε) with a given initial state
ρ, target state dimension m, and infidelity tolerance ε, the
maximal success probability of coherence distillation under
the operation class O ∈ {SIO, IO,DIO,MIO} is denoted as
PO(ρ→ Ψm, ε), where Ψm := |Ψm〉〈Ψm |. This is given by
the maximal value of p such that there exists a transformation
ΠA→LB ∈ O satisfying the constraints

ΠA→LB(ρ) = p|0〉〈0|L ⊗ σ + (1 − p)|1〉〈1|L ⊗ ω,
F(σ,Ψm) ≥ 1 − ε, (1)

where F(ρ, σ) := ‖ √ρ√σ‖21 is the fidelity and ‖ · ‖1 is the
trace norm. If the distillation fails, we can perform a free
operation to make the unwanted state ω completely mixed
without changing the success probability. Thus, without loss
of generality, we can take ω = 1/m. Exploiting the fact
that the target state Ψm is invariant under the twirling op-
eration T(ρ) = 1

d!
∑d!

i=1 PiρPi , where Pi are all the permu-
tations on the input system and d is the input dimension,
we can also fix the optimal output state as σ = Ψεm where
Ψεm := (1 − ε)Ψm + ε(1 − Ψm)/(m − 1). Specifically, for
any optimal output state σ, we can further perform the free
operation T , which gives a new output state T(σ) always in
the form of aΨm + b(1 − Ψm)/(m − 1), where we can choose
a = 1 − ε and b = ε while keeping the fidelity with the target
state and the optimal success probability unchanged. This al-
lows us to write PO(ρ→Ψm, ε) = PO(ρ→Ψεm, 0), meaning
that the maximal success probability of coherence distillation
is the same as the maximal success probability of transform-
ing the given state to the target Ψεm with fidelity one.

Computing the maximum distillation probability.— We
now set out to find efficiently computable expressions for the
maximal distillation probability. Consider a generalization of
the set O to the class Osub of subnormalized quantum oper-
ations, that is, completely positive and trace-nonincreasing

Sρ
εt · Sρ

Ψεm

Ψm

FIG. 1. Geometric interpretation of the maximal success probability
of coherence distillation. See text for details.

maps. Using this notation, we can conveniently express the
maximal success probability as follows (see also [29, 34]).

Proposition 1 For any triplet (ρ,m, ε) and operation class O,
the maximal success probability PO(ρ→ Ψm, ε) is given by
max

{
p ∈ R+

��� E(ρ) = p · Ψεm, E ∈ Osub

}
. It then holds that

PO (ρ→Ψm, ε)−1 = min
{
t ∈ R+

��Ψεm ∈ t · Sρ
}

where Sρ :={E(ρ) �� E ∈ Osub
}

is the set of all the output operators of ρ
under the operation class Osub.

The result simplifies the optimization of the maximal success
probability via subnormalized free operations, providing a ge-
ometric interpretation for the maximal success probability as
a gauge function [35], as shown in Fig. 1. This justifies our
intuition that the closer the state ρ to Ψεm, the less we need to
expand the set Sρ, and thus the larger success probability we
can obtain. We note that the result in Prop. 1 can be extended
also to more general convex resource theories [36–38].

By further exploiting the symmetry of Ψεm, we can com-
pute the maximal success probability under MIO/DIO via the
following semidefinite programs (SDPs).

Theorem 2 For any triplet (ρ,m, ε), the maximal success
probability of distillation under MIO and DIO are

PMIO(ρ→Ψm, ε) = max. Tr Gρ

s.t. ∆(G) = m∆(C), (2a)
0 ≤ C ≤ G ≤ 1, (2b)
Tr Cρ ≥ (1 − ε)Tr Gρ, (2c)

PDIO(ρ→Ψm, ε) = max. Tr Gρ

s.t. Eqs. (2a, 2b, 2c), G = ∆(G).

For completeness, we give the dual forms and alternative for-
mulations of the SDPs in the Supplemental Material [21].
These SDPs provide us with efficient ways to numerically
calculate the maximal success probability for general triplets
(ρ,m, ε), and allow us to obtain key results on the power of
different operations for probabilistic coherence distillation.

In this respect, let us also consider the choice of IO or
SIO as the free operations. It is known that these two sets
of operations have the same power in pure-state transfor-
mations, completely characterized by majorization relations.
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This yields [25–27, 39, 40]

P(S)IO(ϕ→Ψm, 0)=


0 if rank∆(ϕ) < m,

min
k∈[1,m]

m
k

d∑
i=m−k+1

ϕ2
i otherwise,

where we have assumed without loss of generality that the
coefficients of ϕ are non-negative and arranged in non-
increasing order. In a similar way, operations in the class DIO
can never increase the diagonal rank of a pure state, while it
is known that MIO allow for the rank to increase [25], sug-
gesting that MIO is a much stronger class. It is thus surprising
that MIO and DIO have exactly the same power in the task
of deterministic coherence distillation [17], and that the two
sets of operations lead to the same asymptotic transformation
rates for all states [41]. In the following, we will instead show
crucial differences between MIO and DIO when one goes be-
yond deterministic transformations, highlighting the increased
capabilities of MIO in probabilistic distillation, as well as es-
tablishing limitations on coherence distillation in general.

Theorem 3 For any triplet (ρ,m, 0) with a full-rank state ρ, it
holds that PMIO(ρ→Ψm, 0) = 0. For any triplet (ϕ,m, 0) with
a coherent pure state |ϕ〉 =

∑n
i=1 ϕi |i〉, ϕi , 0, n ≥ 2, it holds

PMIO(ϕ→Ψm, 0) ≥
n2

m(∑n
i=1 |ϕi |−2) > 0. (3)

This result establishes a no-go theorem for coherence distil-
lation, showing that no class of free operations preserving in-
coherent states can allow to distill any perfect coherence from
a full-rank state, even probabilistically. Note that any generic
density matrix has full rank, and so does Ψεm for any ε > 0.
Thus |PMIO(Ψεm → Ψm, 0) − PMIO(Ψm → Ψm, 0)| = 1, even
though Ψεm can be arbitrarily close to Ψm, implying that the
maximal success probability is not continuous with respect to
the input state. The physical implications of this result are
that any noise typically resulting in full-rank states will lead
in practice to an irretrievable loss of resources. For example,
in a scenario where the coherent state Ψm is stored in a quan-
tum memory exposed to depolarizing noise, it is impossible to
recover it perfectly via free operations, even probabilistically.

However, for any pure coherent state, Theorem 3 shows
that it is always possible to probabilistically distill a maxi-
mally coherent state of arbitrary dimension via MIO. In the
Supplemental Material [21] we establish a tighter bound for
the probability of distillation under MIO, which in particu-
lar gives PMIO(Ψn→Ψm, 0) ≥ n−1

m−1 when m > n. Observe
that instead PDIO(Ψn → Ψm, 0) = 0 for m > n. This tells
us that, as the dimension n increases, there are n-dimensional
density matrices ρn such that PMIO(ρn→Ψn+1, 0) → 1 while
PDIO(ρn → Ψn+1, 0) = 0 for all n, i.e., PMIO and PDIO can
exhibit an arbitrarily large gap. This shows that in the proba-
bilistic distillation scenario, MIO can be much more powerful
than DIO in general, in a stark contrast with the case of deter-
ministic coherence distillation [17] (see Table I).

Deterministic
distillation [17]

Pure states General states
MIO = DIO = IO = SIO MIO = DIO

Probabilistic
distillation [?]

Pure states Full-rank states
MIO > DIO = IO = SIO MIO = DIO = IO = SIO = �

TABLE I. Comparison of the operational power of different sets of
free operations for deterministic [17] versus probabilistic [?] (this
paper) distillation of quantum coherence. � denotes the empty set.

The relation between the capabilities of different operations
is made precise by the following result, characterizing the fun-
damental task of distilling coherence from pure input states.

Theorem 4 For any pure state ϕ and any m, we have
PDIO(ϕ→Ψm, 0) = P(S)IO(ϕ→Ψm, 0).
We can therefore see that DIO does not provide any oper-
ational advantage over SIO and IO in pure-state probabilis-
tic coherence distillation, despite being a strictly larger class
than SIO [25, 42]. Putting together the results of Theorems
3 and 4, we have shown that a large gap in the operational
capabilities of operations in the one-shot resource theory of
quantum coherence exists between MIO and DIO, but not
between DIO and SIO/IO — this can be compared with the
case of deterministic distillation, where all sets of operations
O ∈ {SIO, IO,DIO,MIO} allow for the same achievable rate
of distillation from pure states [17], see Table I.

In the task of distilling maximally coherent qubit states Ψ2,
we can extend the above result and obtain analytically the
maximal success probability for arbitrary infidelity ε. In this
particular case, MIO provides no advantage over DIO.

Proposition 5 For O ∈ {DIO,MIO} and any pure state ϕ
with ϕ1 ≥ ... ≥ ϕn > 0, it holds that

PO(ϕ→Ψ2, ε)=


1 if ε≥ ε0(ϕ1),
2(1 − ϕ2

1)
( √

1−ε+
√
ε

1−2ε

)2
otherwise.

Here the function ε0, defined as ε0(ϕ1) = 0 if ϕ1 ≤ 1√
2

and

ε0(ϕ1) = 1
2 − ϕ1

√
1 − ϕ2

1 otherwise, can be related to the
m-distillation norm [17] characterizing the fidelity of deter-
ministic distillation. Using this analytical result, we can give
a concrete example to show that the probabilistic distillation
framework can outperform the deterministic one. Suppose we
need to distill a maximally coherent qubit state Ψ2 from the
input state |ϕ〉 = (3|0〉 + |1〉)/

√
10 with acceptable fidelity at

least 0.9. The input state becomes useless in the deterministic
scenario, since the maximal fidelity achievable via determin-
istic protocols is given by 0.8. However, probabilistic opera-
tions allow us to achieve the required distillation fidelity with
1/2 success probability, demonstrating an explicit operational
advantage of probabilistic distillation. In another scenario, if
the acceptable fidelity is 0.8, we can gain higher distillation fi-
delity by compromising some success probability even though
deterministic protocols are sufficient to accomplish the task.
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FIG. 2. Interplay between the fidelity F = 1 − ε and the success
probability p of coherence distillation for the example transformation
(|0〉 + 3|1〉)/

√
10→Ψ3. A discontinuity occurs at F = 2/3.

Such a setting may be dubbed “gambling with coherence”,
adapting terminology from [18, 26].

Relation between distillation fidelity and probability.—For
any given input state ρ and target state dimension m, the max-
imal success probability is only dependent on the transforma-
tion fidelity. The higher the fidelity we require, the lower the
probability that we will succeed. Intuitively, one would expect
the success probability to decrease smoothly as the fidelity in-
creases; however, we will now show that the success probabil-
ity can vanish discontinuously beyond some fidelity threshold.
This phenomenon is analogous to the strong converse theorem
in channel coding theory [43–45], which says that the coding
success probability goes to zero if the coding rate exceeds the
capacity of the channel. While this phenomenon cannot occur
in distillation from pure input states under MIO due to Theo-
rem 3, in the following result we completely characterize this
“sudden death” property for pure input states under DIO.

Proposition 6 For any pure state |ϕ〉 =
∑n

i=1 ϕi |i〉 with
nonzero coefficients ϕi , it holds that

PDIO(ϕ→Ψm, ε)
{
> 0 if n ≥ m or if n < m and ε ≥ 1− n

m,

= 0 if n < m and ε < 1− n
m .

In the particular case of the transformation Ψn→Ψm with
n ≤ m, the probability equals 1 as long as ε ≥ 1 − n

m . The
result shows in particular that, if the output dimension is larger
than the input dimension, any trade-off between the maximal
success probability and the transformation fidelity will always
be truncated at the fidelity threshold n

m . Specifically, at the
point ε = 1− n

m , demanding a slightly higher fidelity will make
the probabilistic distillation impossible, as shown in Fig. 2.

Probabilistic distillation with catalytic assistance.— A
more general coherence distillation setting is to consider the
scenario with catalytic assistance [28], where the input to the
protocol consists of the resource state ρ together with another
state γ (catalyst). As suggested by its name, we need to re-
produce γ untouched in the output regardless of whether the
distillation process succeeds or not. In [46], the authors stud-
ied catalytic coherence transformations without enforcing the
preservation of the catalyst when the transformation fails —
it is then not surprising that catalytic assistance improves the

success probability, since we take the risk to sacrifice our cat-
alyst. However, we can show that using catalysts can enhance
probabilistic distillation even when we require them to be re-
produced regardless of the outcome.

Formally, we denote the catalysis-assisted maximal success
probability of coherence distillation under the operation class
O as PO

(
ρ
γ−→ Ψm, ε

)
, which is given by the maximal value of

p subject to the constraints

Π(ρ ⊗ γ) =
(
p|0〉〈0| ⊗ σ + (1 − p)|1〉〈1| ⊗ ω) ⊗ γ,

F(σ,Ψm) ≥ 1 − ε, Π ∈ O. (4)

Since we can always choose not to interact with the catalyst,
it is clear that PO

(
ρ
γ−→ Ψm, ε

) ≥ PO(ρ→Ψm, ε).
Taking as an example the two-qubit state ρ = 1

2 (v1+v2)with
|v1〉 = 1

2 (|00〉 − |01〉 − |10〉 + |11〉) and |v2〉 = 1
5
√

2
(2|00〉 +

6|01〉−3|10〉+ |11〉), it turns out that the catalytic assistance of
γ = Ψ2 can enhance the success probability (by at least 12%)
of distilling one coherent bit via DIO reliably (ε ≤ 0.01) [21].
This example shows that the maximally coherent state can be
used as a catalyst, manifesting a difference with the case of
deterministic state transformation, where no transformation
can be catalyzed by a maximally coherent state [28, 40]. We
further note that if we allow a small perturbation of the cat-
alyst to be returned in the protocol, one may obtain an even
higher success probability as shown in the Supplemental Ma-
terial [21] — such a setting has been considered e.g. in [47]
for the resource theory of thermodynamics.

Conclusions.— We have developed a general framework of
probabilistic coherence distillation. We interpreted the funda-
mental relations between the distillation fidelity and the maxi-
mal success probability via a gauge function construction, and
showed that the maximal success probability under MIO and
DIO can be efficiently computed via semidefinite program-
ming. We proved that distilling perfect coherence from any
full-rank state is impossible even probabilistically, while any
pure coherent state can always be perfectly distilled with MIO
into a maximally coherent state of arbitrary dimension with a
non-zero probability, highlighting an operational advantage of
MIO over other sets of operations, in contrast with the deter-
ministic case. On the other hand, we found that DIO pro-
vides no operational advantage over SIO in pure-state distilla-
tion, with the maximal achievable distillation probability be-
ing equal under the two classes of operations. We provided
an analytical characterization of distillation with pure input
states and in particular described the distillation of qubit max-
imally coherent states under MIO and DIO. We further ex-
plored novel phenomena of coherence distillation such as the
breakdown of the trade-off between maximal success prob-
ability and fidelity under a certain threshold as well as the
catalyst-assisted enhancement by maximally coherent states.

Our work establishes fundamental limitations to the pro-
cessing of quantum coherence in realistic settings, opening
new perspectives for its investigation and exploitation as a re-
source in quantum information processing and quantum tech-
nology [1–8]. It would be of interest to analyze as well
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the task of probabilistic coherence dilution under different
free operations, complementing the deterministic case stud-
ied in [16]. Another interesting perspective for future work
may be to apply the framework of probabilistic distillation de-
veloped here to the study of other important resource theories,
such as those of asymmetry, magic, and thermodynamics [38].

Acknowledgments.— We would like to thank Gilad Gour,
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Supplemental Material:
Probabilistic distillation of quantum coherence

This supplemental material provides more detailed analysis and proofs of the results in the main text. We may reiterate some
of the steps in the main text to make the supplemental material more explicit and self-contained.

PROOF OF PROPOSITION 1

For any triplet (ρ,m, ε), the definition of the maximal success probability of coherence distillation is defined by

PO(ρ→Ψm, ε) = max p (S1a)
s.t. ΠA→LB(ρ) = p|0〉〈0|L ⊗ σ + (1 − p)|1〉〈1|L ⊗ ω, (S1b)

F(σ,Ψm) ≥ 1 − ε, ΠA→LB ∈ O, 0 ≤ p ≤ 1, (S1c)

where F(ρ, σ) := ‖ √ρ√σ‖21 is the fidelity and ‖ · ‖1 is the trace norm.

Remark 1 The optimal solution in the optimization (S1) can always achieve the equality in the condition F(ρ,Ψm) ≥ 1 − ε.
That is PO(ρ→Ψm, ε) = P̃O(ρ→Ψm, ε) with

P̃O(ρ→Ψm, ε) = max p (S2a)
s.t. ΠA→LB(ρ) = p|0〉〈0|L ⊗ σ + (1 − p)|1〉〈1|L ⊗ ω, (S2b)

F(σ,Ψm) = 1 − ε, ΠA→LB ∈ O, 0 ≤ p ≤ 1. (S2c)

It is clear that PO(ρ→ Ψm, ε) ≥ P̃O(ρ→ Ψm, ε) since PO(ρ→ Ψm, ε) is maximizing over a larger feasible set. However,
for any optimal solution in (S1) such that F(σ,Ψm) ≥ 1 − ε, we can further apply a depolarizing noise (free operation) to
make the fidelity between ρ and Ψm decrease exactly to 1 − ε, which gives a feasible solution for (S2). Thus it also holds
PO(ρ→Ψm, ε) ≤ P̃O(ρ→Ψm, ε). In the following, we will equivalently use both optimizations (S1) and (S2).

Remark 2 Denote the twirling operation T(ρ) = 1
d!

∑d!
i=1 PiρPi , where Pi are all the permutations on the input system and d

is the input dimension. If the distillation fails, we can perform a free operation T ◦ ∆ ∈ SIO to make the unwanted state ω
completely mixed without changing the success probability. Thus, without loss of generality, we can take ω = 1/m. On the other
hand, if the distillation process succeeds and we obtain an output state σ such that F(σ,Ψm) = 1−ε, we can further perform the
free operation T which gives a new output state T(σ) always in the form of aΨm + b(1−Ψm)/(m− 1). Since F(σ,Ψm) = 1− ε,
we have T(σ) = Ψεm with Ψεm := (1 − ε)Ψm + ε 1−Ψm

m−1 . Thus, without loss of generality, we can take σ = Ψεm. Finally, the
maximal success probability of coherence distillation can be given by

PO(ρ→Ψm, ε) = max p (S3a)
s.t. ΠA→LB(ρ) = p|0〉〈0|L ⊗ Ψεm + (1 − p)|1〉〈1|L ⊗ 1/m, (S3b)
ΠA→LB ∈ O, 0 ≤ p ≤ 1, (S3c)

Proposition 1 For any triplet (ρ,m, ε) and operation class O, the maximal success probability PO(ρ→Ψm, ε) is given by

max
{
p ∈ R+

��� E(ρ) = p · Ψεm, E ∈ Osub

}
. (S4)

As a consequence, it holds that PO (ρ→Ψm, ε)−1 = min
{
t ∈ R+

��� Ψεm ∈ t · Sρ
}

where Sρ B
{
E(ρ)

��� E ∈ Osub

}
is the set of all

the output operators of ρ under the operation class Osub.

Proof. For any quantum operation ΠA→LB such that ΠA→LB(ρ) = |0〉〈0|L ⊗ E0(ρ) + |1〉〈1|L ⊗ E1(ρ) where E0 and E1 are two
subnormalized operations, we can check that ΠA→LB ∈ O if and only if E0, E1 ∈ Osub and E0 + E1 is trace preserving. Thus
finding the optimal solution in the optimization (S3) is equivalent to find the optimal subnormalized operations E0 and E1 such
that E0(ρ) = p ·Ψεm, E1(ρ) = (1− p)1/m and E0 + E1 trace-preserving. Since we can always take E1(ρ) = (Tr ρ−Tr E0(ρ))1/m
without compromising the success probability, the maximal success probability of coherence distillation is only dependent on
E0, and the result follows. �
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PROOF OF THEOREM 2

Theorem 2 For any triplet (ρ,m, ε), the maximal success probability of distillation under MIO and DIO are given by

PMIO(ρ→Ψm, ε) = maximize
G,C

Tr Gρ (S5a)

subject to ∆(G) = m∆(C), (S5b)
0 ≤ C ≤ G ≤ 1, (S5c)
Tr Cρ ≥ (1 − ε)Tr Gρ, (S5d)

and

PDIO(ρ→Ψm, ε) = maximize
G,C

Tr Gρ (S6a)

subject to ∆(G) = m∆(C), (S6b)
0 ≤ C ≤ G ≤ 1, (S6c)
Tr Cρ ≥ (1 − ε)Tr Gρ, (S6d)
G = ∆(G). (S6e)

Proof. We show the proof for MIO first. Denote JN as the Choi-Jamiołkowski matrix of operation N . Due to the Choi-
Jamiołkowski isomorphism, we can write the optimization (S4) in terms of Choi-Jamiołkowski matrix,

PMIO(ρ→ Ψm, ε) = max p (S7a)

s.t. TrA JE(ρT ⊗ 1B) = p · Ψεm, (S7b)
JE ≥ 0,TrB JE ≤ 1A, (S7c)

TrA JE(|i〉〈i |T ⊗ 1B) = ∆(TrA JE(|i〉〈i |T ⊗ 1B)), ∀i. (S7d)

For any optimal subnormalized quantum operation E in optimization (S4), the operation Ẽ = T ◦ E is also optimal since Ψεm is
invariant under the twirling operation T . Thus JẼ admits the structure of JẼ = CT ⊗ Ψm + DT ⊗ (1−Ψm) for some operators C
and D. Taking this form of Choi-Jamiołkowski matrix into the conditions of the optimization (S7), we have

PMIO(ρ→ Ψm, ε) = max p (S8a)
s.t. Tr Cρ = p(1 − ε), Tr(m − 1)Dρ = pε, (S8b)

C ≥ 0, D ≥ 0, C + (m − 1)D ≤ 1, (S8c)
∆(C) = ∆(D). (S8d)

Denoting G := C + (m − 1)D and eliminating variable D, we will obtain the result (S5). Note that the last condition in (S5) can
be taken as equality due to the argument in Remark 1. Following the similar steps, we can obtain the optimization for DIO. �

Remark 3 From the conditions G = ∆(G) = m∆(C), we can eliminate the variable G in the optimization (S6) and obtain

PDIO(ρ→Ψm, ε) = maximize
C

Tr m∆(C)ρ (S9a)

subject to 0 ≤ C ≤ m∆(C) ≤ 1, (S9b)
Tr Cρ ≥ m(1 − ε)Tr∆(C)ρ. (S9c)

Remark 4 We will make repeated use of the semidefinite programs given in Theorem 2 and their Lagrange duals. We report the
dual forms below. The dual of (S5) is given by

PMIO(ρ→Ψm, ε) = minimize
X,Y,Z,λ

Tr X

subject to [1 − λ(1 − ε)] ρ + Y − X + ∆(Z) ≤ 0,
λρ − Y − m∆(Z) ≤ 0,
X,Y ≥ 0,
λ ∈ R+,

(S10)
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The dual of (S9) is given by

PDIO(ρ→Ψm, ε) = minimize
X,Y,λ

Tr X

subject to m∆(ρ) + m∆(Y ) − Y − m∆(X) + λρ − m(1 − ε)λ∆(ρ) ≤ 0,
X,Y ≥ 0,
λ ∈ R+.

(S11)

To see that strong duality holds, it suffices to note the existence of strictly feasible solutions: in (S10), take λ = 1
1−ε , X = 3λ1,Y =

2λ1, Z = 0, and in (S11), take λ = 1
1−ε , X = 3λ1,Y = 1.

Remark 5 In the case ε = 0, the primal problems can alternatively be expressed as

PMIO(ρ→Ψm, 0) = maximize
G,C

Tr Gρ

subject to C ≥ 0,
G ≤ 1,
∆(G) = m∆(C),
G − C ∈ {

A
�� supp(A) ⊆ ker(ρ)} ∩ H+.

(S12)

PDIO(ρ→Ψm, 0) = maximize
C

Tr m∆(C)ρ
subject to C ≥ 0,

m∆(C) ≤ 1,
m∆(C) − C ∈ {

A
�� supp(A) ⊆ ker(ρ)} ∩ H+,

(S13)

where we have used H+ to denote the set of positive semidefinite matrices. This gives the duals

PMIO(ρ→Ψm, 0) = minimize
W,Z

Tr (W + Z) + 1

subject to ρ + W + ∆(Z) ≥ 0,
W + m∆(Z) ≥ 0,

W ∈ {
A

�� supp(A) ⊆ supp(ρ)} + H+,

(S14)

PDIO(ρ→Ψm, 0) = minimize
X,W

Tr X

subject to m∆(ρ) + W − m∆(W) − m∆(X) ≤ 0,
X ≥ 0,

W ∈ {
A

�� supp(A) ⊆ supp(ρ)} + H+.

(S15)

PROOF OF THEOREM 3

To prove Theorem 3 in the main text, we will establish a stronger version of the result as follows.

Theorem S1 For any triplet (ρ,m, 0) with full-rank state ρ, it holds that PMIO(ρ→ Ψm, 0) = 0. For any triplet (ϕ,m, 0) with
coherent pure state |ϕ〉 =

∑n
i=1 ϕi |i〉 and ϕi , 0, n ≥ 2, it holds that

PMIO(ϕ→ Ψm, 0) ≥
n2∑n

i=1 |ϕi |−2

n − m
n − 1

ϕ̃ +
n(m − 1)

n − 1
∆(ϕ̃)

−1

∞
≥ n2

m(∑n
i=1 |ϕi |−2) > 0 (S16)

where

|ϕ̃〉 :=
1√
s

n∑
i=1

ϕi

|ϕi |2
|i〉 with s =

n∑
j=1

|ϕj |−2. (S17)
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Proof. Recall the SDP

PMIO(ρ→Ψm, ε) = max
{
Tr Gρ

�� ∆(G) = m∆(C), 0 ≤ C ≤ G ≤ 1,Tr Cρ = (1 − ε)Tr Gρ
}
. (S18)

For the first argument, we know that G − C ≥ 0 and Tr(G − C)ρ = 0. Since ρ is full-rank, we have G = C. Together with
∆(G) = m∆(C), we have G = C = 0 and PMIO(ρ→Ψm, 0) = 0.

As for the second argument, let us choose

C = cϕ̃ , G = cϕ̃ +
(m − 1)c

n − 1
(n∆(ϕ̃) − ϕ̃) , (S19)

where

c =

n − m
n − 1

ϕ̃ +
n(m − 1)

n − 1
∆(ϕ̃)

−1

∞
. (S20)

We check the constraints in (S18) one by one. The first condition trivially holds by the construction. The last condition holds
since 〈ϕ|n∆(ϕ̃) − ϕ̃|ϕ〉 = 0, which implies that 〈ϕ|C |ϕ〉 = 〈ϕ|G |ϕ〉. We now move on to the second condition. Clearly C ≥ 0
and furthermore G ≥ C as follows from ϕ ≤ n∆(ϕ). To show that G ≤ 1, just observe that

‖G‖∞ = c
ϕ̃ +

m − 1
n − 1

(n∆(ϕ̃) − ϕ̃)

∞

= c
n − m

n − 1
ϕ̃ +

n(m − 1)
n − 1

∆(ϕ̃)

∞

= 1 . (S21)

Hence, C,G as defined above form a valid ansatz for the semidefinite program (S18) and

PMIO(ϕ,m, 0) ≥ Tr Gϕ =
n2c

s
, (S22)

which yields the first lower bound in (S16). As for the second bound, it suffices to show that c ≥ 1/m, i.e. that c−1 ≤ m. This
can be done thanks to the triangle inequality:

c−1 =

ϕ̃ +
m − 1
n − 1

(n∆(ϕ̃) − ϕ̃)

∞
≤ ‖ϕ̃‖∞ + (m − 1)

n∆(ϕ̃) − ϕ̃
n − 1


∞
≤ 1 + (m − 1) = m , (S23)

where we have used the fact that n∆(ϕ̃)−ϕ̃
n−1 is a valid density matrix. �

PROOF OF THEOREM 4

Theorem 4 For any pure state ϕ and any m, it holds that

PDIO(ϕ→Ψm, 0) = PSIO(ϕ→Ψm, 0). (S24)

Proof. We will assume without loss of generality that the coefficients of |ϕ〉 are non-negative and arranged in non-increasing
order. Let

k B arg min
1≤ j≤m

1
j

d∑
i=m−j+1

ϕ2
i (S25)

such that PSIO(ϕ→Ψm, 0) = m
k

∑d
i=m−k+1 ϕ

2
i . Note that if k = m, then 1 ≥ PDIO(ϕ→Ψm, 0) ≥ PSIO(ϕ→Ψm, 0) = 1. In the

following, we will therefore assume that 1 ≤ k ≤ m − 1. Further, let us begin by considering strictly positive ε.
Define

ϕA B
m−k∑
i, j=1

|i〉〈i |ϕ| j〉〈 j |

ϕB B
d∑

i, j=m−k+1

|i〉〈i |ϕ| j〉〈 j |
(S26)
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and notice that PSIO(ϕ→Ψm, 0) = m
k Tr ϕB.

Recall that the SDP for the maximum distillation probability under DIO is given by

PDIO(ρ→Ψm, ε) = minimize
X,P,λ

Tr X

subject to m∆(ρ) + m∆(P) − P − m∆(X) + λρ − m(1 − ε)λ∆(ρ) ≤ 0 (S27a)
P, X ≥ 0 (S27b)
λ ∈ R+. (S27c)

We will take the ansatz

P = µ1ϕB − µ2ϕA + [(1 − ε)λ − 1] ϕ
X = µ1∆(ϕB)

(S28)

for some coefficients µ1, µ2 ∈ R+. Our aim will now be to show that there exists a suitable choice of λ, µ1, and µ2 such that
(X, P, λ) is feasible for the SDP (S27).

To this end, denote by Θ the all-ones matrix of appropriate size, and notice that the condition (S27a) reduces to

0 ≥ m∆(ϕ) + m∆(P) − P − m∆(X) + λϕ − m(1 − ε)λ∆(ϕ)
= µ2 (ϕA − m∆(ϕA)) − µ1ϕB + (1 + λε)ϕ

=

(
[µ2 + 1 + λε]ΘA − mµ21A [1 + λε]ΘO

[1 + λε]ΘTO [1 + λε − µ1]ΘB

)
◦ ϕ

C Q ◦ ϕ

(S29)

where ◦ denotes the Schur product. Showing that Q ≤ 0 will then imply the desired relation Q ◦ ϕ ≤ 0 by the Schur product
theorem. From the generalized Schur complement condition, Q ≤ 0 if and only if the following all hold [? ? ]:

(i) (µ2 + 1 + λε)ΘA − mµ21A ≤ 0,
(ii) (1 + λε − µ1)ΘB ≤ 0,

(iii) (µ2 + 1 + λε)ΘA − mµ21A − (1 + λε)2ΘO ([1 + λε − µ1]ΘB)−1 ΘTO ≤ 0

(S30)

where M−1 denotes the Moore-Penrose pseudoinverse, which in particular satisfies M−1 = M/Tr (M)2 for any rank-one Hermi-
tian M [24]. From the first two conditions, we have

(i) µ2 ≥ (1 + λε)m − k
k

,

(ii) µ1 ≥ 1 + λε,
(S31)

and the third condition reduces to

0 ≥ (µ2 + 1 + λε)ΘA − mµ21A −
(1 + λε)2

[1 + λε − µ1]TrΘ2
B

ΘOΘBΘ
T
O

= (µ2 + 1 + λε)ΘA − mµ21A −
(1 + λε)2

1 + λε − µ1
ΘA

=

[
µ2 −

(1 + λε)µ1

1 + λε − µ1

]
ΘA − mµ21A.

(S32)

Noting that the coefficient µ2 − (1+λε)µ1
1+λε−µ1

can never be negative when conditions (i) and (ii) are satisfied, we have

(iii) mµ2 ≥ (m − k)
[
µ2 −

(1 + λε)µ1

1 + λε − µ1

]
. (S33)

To ensure that P ≥ 0, notice that since

P =

(
[−µ2 + (1 − ε)λ − 1]ΘA [(1 − ε)λ − 1]ΘO

[(1 − ε)λ − 1]ΘTO [µ1 + (1 − ε)λ − 1]ΘB

)
◦ ϕ, (S34)
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the positivity of P is equivalent to the positivity of the matrix

P′ B

(
−µ2 + (1 − ε)λ − 1 (1 − ε)λ − 1
(1 − ε)λ − 1 µ1 + (1 − ε)λ − 1

)
. (S35)

We therefore have two additional conditions:

(iv) 0 ≤ Tr P′ = 2(1 − ε)λ + µ1 − µ2 − 2
(v) 0 ≤ Det P′ = µ2 − (1 − ε)λµ2 − µ1 [1 − (1 − ε)λ + µ2] .

(S36)

Let us stress that conditions (i)–(v) together with µ1 ≥ 0 constitute a set of sufficient conditions for a given choice of (X, P, λ)
of the form (S28) to satisfy the feasibility conditions of SDP (S27).

We will now make the ansatz

λ =
µ1 − µ2

εµ2

µ1 =
kµ2(µ2 − 1)

m − k

(S37)

leaving µ2 as a free variable for now. With this choice, conditions (i)–(iii) are always satisfied for any µ2 ∈ R, while the other
conditions reduce to

(iv) 2(kµ2 − m) + ε(2k − (2k + m)µ2 + kµ2
2) ≥ 0

(v) µ2

(
εkm(1 − µ2)2 − (m − kµ2)2

)
≤ 0

(S38)

We will now make a choice of µ2 which can be verified to satisfy the above the inequalities for any ε < k
m as

µ2 =
m + m2 √ε

k − εm
(S39)

where we note that µ2 ≥ 1 and limε→0 µ1 = limε→0 µ2 = m
k . Since all conditions (i)–(v) are satisfied for our choice of (X, P, λ)

with the given µ1 and µ2 for any ε < k
m , the triple (X, P, λ) is a valid feasible solution for the SDP (S27). This means in particular

that for any 0 < ε < k
m we have

PDIO(ϕ→Ψm, ε) ≤ Tr X = µ1Tr ϕB . (S40)

Using the fact that SIO ⊂ DIO as well as that PDIO(ϕ→Ψm, ε) ≥ PDIO(ϕ→Ψm, 0) for any ε, this then gives

PSIO(ϕ→Ψm, 0) ≤ PDIO(ϕ→Ψm, 0)
≤ lim
ε→0

PDIO(ϕ→Ψm, ε)

≤ m
k

Tr ϕB

= PSIO(ϕ→Ψm, 0)

(S41)

which completes the proof. �

PROOF OF PROPOSITION 5 AND 6

Proposition 5 For O ∈ {DIO,MIO} and any pure state ϕ with ϕ1 ≥ ... ≥ ϕn > 0, it holds that

PO(ϕ→Ψ2, ε)=


1 if ε≥ ε0(ϕ1),
2(1 − ϕ2

1)
( √

1−ε+
√
ε

1−2ε

)2
otherwise,

(S42)

where

ε0(ϕ1) B


0 if ϕ1 ≤ 1√
2
,

1
2 − ϕ1

√
1 − ϕ2

1 otherwise.
(S43)
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Proof. Since the case ε = 0 follows from Theorem 4, we will assume ε > 0. For the case of ϕ1 ≤ 1√
2
, we have

PO(ϕ→Ψ2, ε) ≥ PSIO(ϕ→Ψ2, 0) = 1. (S44)

From the result in [? ], we know that if ε ≥ 1
2 − ϕ1

√
1 − ϕ2

1, then PDIO(ϕ→ Ψ2, ε) = 1. In the following, we therefore only

consider the case ε < 1
2 − ϕ1

√
1 − ϕ2

1. We prove this result by explicit constructing feasible solutions in both primal and dual
SDPs. The primal SDP under DIO is given by

PDIO(ϕ→Ψ2, ε) = max
{
Tr Gϕ

�� Tr Cϕ ≥ (1 − ε)Tr Gϕ, 0 ≤ C ≤ G ≤ 1, ∆(G) = 2∆(C), G = ∆(G)} . (S45)

We take the ansatz

G = 1 − x |0〉〈0|, C =
1
2

G + y

n∑
i=2

ϕ1ϕn(|1〉〈i | + |i〉〈1|). (S46)

Then we have

Tr Gρ = 1 − xϕ2
1, Tr Cρ =

1
2
(1 − xϕ2

1) + 2yϕ2
1(1 − ϕ2

1), (S47)

and

spec(C) = spec(G − C) =


1
2
, · · · , 1

2︸    ︷︷    ︸
n−2 fold

,
1
2
− x

4
−

√
y2ϕ2

1(1 − ϕ2
1) +

x2

16
,

1
2
− x

4
+

√
y2ϕ2

1(1 − ϕ2
1) +

x2

16


. (S48)

Then we have the relaxation

PDIO(ϕ→Ψ2, ε) ≥ maximize 1 − xϕ2
1

subject to 4yϕ2
1(1 − ϕ2

1) = (1 − 2ε)(1 − xϕ2
1),

1 − x ≥ 4y2ϕ2
1(1 − ϕ2

1),
0 ≤ x ≤ 1.

(S49)

By choosing

x =
1 − 2(1 − ϕ2

1)(
√

1−ε+
√
ε

1−2ε )2
ϕ2

1

, y =
(
√

1 − ε +
√
ε)2

2ϕ2
1(1 − 2ε) , (S50)

we can verify that this is a feasible solution. Thus we have

PDIO(ϕ→Ψ2, ε) ≥ 2(1 − ϕ2
1)

( √
1 − ε +

√
ε

1 − 2ε

)2

. (S51)

As for the dual problem, we consider the dual SDP under MIO,

PMIO(ϕ→Ψ2, ε) = minimize TrY

subject to (1 − (1 − ε)x)ϕ + X + ∆(Z) ≤ Y,

xϕ − X − 2∆(Z) ≤ 0,
x ≥ 0, X ≥ 0,Y ≥ 0

(S52)

Taking

x =
(
√

1 − ε +
√
ε)2√

1 − ε√ε(1 − 2ε)
, Y = 2

( √
1 − ε +

√
ε

1 − 2ε

)2

(1 − |0〉〈0|)ϕ(1 − |0〉〈0|), (S53)

Z =
2

1 − 2ε
|0〉〈0|ϕ|0〉〈0|, X = Y − ∆(Z) − (1 − (1 − ε)x)ϕ, (S54)
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we can verify that {x, X,Y, Z} is a valid feasible solution. Thus

PMIO(ϕ→Ψ2, ε) ≤ 2(1 − ϕ2
1)

( √
1 − ε +

√
ε

1 − 2ε

)2

. (S55)

Combining Eqs. (S51) and (S55), we have the desired result. �
Recall that IO and SIO have the same power in pure-state transformations and it holds that

P(S)IO(ϕ→Ψm, 0)=


0 if rank∆(ϕ) < m,

min
k∈[1,m]

m
k

d∑
i=m−k+1

ϕ2
i otherwise.

(S56)

Proposition 6 For any pure state |ϕ〉 =
∑n

i=1 ϕi |i〉 with ϕi > 0, it holds that

• If n ≥ m, PDIO(ϕ→Ψm, ε) > 0.

• If n < m, PDIO(ϕ→Ψm, ε)
{
> 0, ε ≥ 1 − n

m,

= 0, ε < 1 − n
m .

Proof. For the first argument, if n ≥ m, we know that

PDIO(ϕ→Ψm, ε) ≥ PSIO(ϕ→Ψm, 0) > 0, (S57)

where the second inequality follows from Eq. (S56).
Note that if PO(σ1→σ2, 0) = 1, then PO(ρ→σ2, 0) ≥ PO(ρ→σ1, 0) since we can first transform ρ to σ1 perfectly and then

to get σ2. For the second argument, if ε ≥ 1 − n
m , we have

PDIO(Ψn→Ψεm, 0) = PDIO(Ψn→Ψm, ε) = 1. (S58)

The first equality follows from the fact that PO(ρ→ Ψm, ε) = PO(ρ→ Ψεm, 0). The second equality follows from Lemma S2
below. Then

PDIO(ϕ→Ψm, ε) = PDIO(ϕ→Ψεm, 0)
≥ PDIO(ϕ→Ψn, 0)
≥ PSIO(ϕ→Ψn, 0)
> 0.

(S59)

The first inequality follows from Eq. (S58). The last inequality follows from Eq. (S56). If ε ≤ 1 − n
m , we have PDIO(ϕ→

Ψm, ε) ≤ PDIO(Ψn→Ψm, ε) = 0, where the second equality follows from Lemma S2. �

Lemma S2 For any integer n ≤ m, it holds that

PDIO(Ψn→Ψm, ε) =

{
1, ε ≥ 1 − n

m,

0, ε < 1 − n
m .

(S60)

Proof. For ε ≥ 1 − n
m , we can take feasible solution G = 1, C = n

mψn, which gives feasible value 1 in the primal problem. For
ε < 1 − n

m , we can take feasible solution x = 1
1− n

m−ε
, X = Y = 0, Z = 1

m−n−mε1, W = 1
m−n−mε (nψn − 1), which gives feasible

value 0 in the dual problem. �

EXAMPLES FOR CATALYST-ASSISTED ENHANCEMENT

For the catalysis scenario, we require that the catalyst is returned no matter the distillation process succeeds or not. In a
more general case than the setting presented in the main text, we may accept imperfect catalyst to be returned. Denote δ as the
infidelity tolerance for the returning catalyst. We define the catalysis-assisted maximal success probability as

PO(ρ
γ, δ−−−→ Ψm, ε) := max p (S61a)

s.t. Π(ρ ⊗ γ) = p|0〉〈0| ⊗ σ ⊗ γ0 + (1 − p)|1〉〈1| ⊗ ω ⊗ γ1, (S61b)
F(σ,Ψm) ≥ 1 − ε, F(γ, γ0) ≥ 1 − δ, F(γ, γ1) ≥ 1 − δ, (S61c)
Π ∈ O, 0 ≤ p ≤ 1. (S61d)
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Using the same argument as Remark 1 and Remark 2, we can fix the output state σ = Ψεm and ω = 1/m. Then the maximal
success probability can be written as

PO(ρ
γ, δ−−−→ Ψm, ε) = max p (S62a)

s.t. Π(ρ ⊗ γ) = p|0〉〈0| ⊗ Ψεm ⊗ γ0 + (1 − p)|1〉〈1| ⊗ 1/m ⊗ γ1, (S62b)
F(γ, γ0) ≥ 1 − δ, F(γ, γ1) ≥ 1 − δ, (S62c)
Π ∈ O, 0 ≤ p ≤ 1. (S62d)

If the catalyst γ we considered is the maximally coherent state Ψk , we can also fix the output catalyst γ0 = γ1 = Ψδ
k

. It gives

PO(ρ
Ψk, δ−−−−→ Ψm, ε) = max p (S63a)

s.t. Π(ρ ⊗ Ψn) = p|0〉〈0| ⊗ Ψεm ⊗ Ψδk + (1 − p)|1〉〈1| ⊗ 1/m ⊗ Ψδk , (S63b)
Π ∈ O, 0 ≤ p ≤ 1. (S63c)

In the above optimization, the only variables we need to optimize over are Π and p. It is thus clear that optimization (S63) is an
SDP for DIO.

Consider the class of states ρ = q·v1+(1−q)·v2 with |v1〉 = (|00〉−|01〉−|10〉+|11〉)/2, |v2〉 = (2|00〉+6|01〉−3|10〉+|11〉)/5
√

2

and state parameter q ∈ [0.1, 0.5]. We show the difference between the catalysis-assisted success probability PDIO
(
ρ
Ψ2, δ−−−−→

Ψ2, 0.01
)

and the unassisted success probability PDIO
(
ρ → Ψ2, 0.01

)
in the following Fig. 1. It shows that catalyst indeed

enhances the maximal success probability even when requiring perfect catalyst to be returned (δ = 0), while slight infidelity
tolerance of the returning catalyst will boost the maximal success probability even more. On the right hand side of Fig. 1, the

enhancement ratio is given by
[
PDIO

(
ρ
Ψ2, δ−−−−→ Ψ2, 0.01

) − PDIO
(
ρ→Ψ2, 0.01

) ]/PDIO
(
ρ→Ψ2, 0.01

)
. The enhancement ratio can

achieve up to 12% when δ = 0.
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FIG. 1. Examples of catalyst-assisted probabilistic coherence distillation.

Similarly, we can also give another class of states showing the enhancement of catalyst. Consider the class of states ρ =

q · u1 + (1 − q) · u2 with |u1〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2 and |u2〉 = (3|00〉 − 2|01〉 + |10〉 + 2|11〉)/3
√

2 and state parameter

q ∈ [0.2, 0.7]. We also compare PDIO
(
ρ
Ψ2, δ−−−−→ Ψ2, 0.01

)
with PDIO

(
ρ→Ψ2, 0.01

)
and the enhancement is shown in Fig 2.
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FIG. 2. Examples of catalyst-assisted probabilistic coherence distillation.

Remark 6 We can denote V = pγ0 and W = (1− p)γ1 in the optimization (S62). Then for the case that catalyst γ is a pure state,
the fidelity conditions in (S62c) is equivalent to (S64c). Combining with the semidefinite conditions for MIO/DIO, the maximal
success probability under MIO/DIO can be written as SDPs:

PO(ρ
γ, δ−−−→ Ψm, ε) = max Tr V (S64a)

s.t. Π(ρ ⊗ γ) = |0〉〈0| ⊗ Ψεm ⊗ V + |1〉〈1| ⊗ 1/m ⊗W, (S64b)
Tr γV ≥ (1 − δ)Tr V, Tr γW ≥ (1 − δ)Tr W (S64c)
Π ∈ O, 0 ≤ p ≤ 1. (S64d)
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