1,832 research outputs found

    Mach's Principle and Model for a Broken Symmetric Theory of Gravity

    Get PDF
    We investigate spontaneous symmetry breaking in a conformally invariant gravitational model. In particular, we use a conformally invariant scalar tensor theory as the vacuum sector of a gravitational model to examine the idea that gravitational coupling may be the result of a spontaneous symmetry breaking. In this model matter is taken to be coupled with a metric which is different but conformally related to the metric appearing explicitly in the vacuum sector. We show that after the spontaneous symmetry breaking the resulting theory is consistent with Mach's principle in the sense that inertial masses of particles have variable configurations in a cosmological context. Moreover, our analysis allows to construct a mechanism in which the resulting large vacuum energy density relaxes during evolution of the universe.Comment: 9 pages, no figure

    Circulating cell death products predict clinical outcome of colorectal cancer patients.

    Get PDF
    BackgroundTumor cell death generates products that can be measured in the circulation of cancer patients. CK18-Asp396 (M30 antigen) is a caspase-degraded product of cytokeratin 18 (CK18), produced by apoptotic epithelial cells, and is elevated in breast and lung cancer patients.MethodsWe determined the CK18-Asp396 and total CK18 levels in plasma of 49 colorectal cancer patients, before and after surgical resection of the tumor, by ELISA. Correlations with patient and tumor characteristics were determined by Kruskal-Wallis H and Mann-Whitney U tests. Disease-free survival was determined using Kaplan-Meier methodology with Log Rank tests, and univariate and multivariate Cox proportional hazard analysis.ResultsPlasma CK18-Asp396 and total CK18 levels in colorectal cancer patients were related to disease stage and tumor diameter, and were predictive of disease-free survival, independent of disease-stage, with hazard ratios (HR) of patients with high levels (> median) compared to those with low levels (< or = median) of 3.58 (95% CI: 1.17-11.02) and 3.58 (95% CI: 0.97-7.71), respectively. The CK18-Asp396/CK18 ratio, which decreased with tumor progression, was also predictive of disease-free survival, with a low ratio (< or = median) associated with worse disease-free survival: HR 2.78 (95% CI: 1.06-7.19). Remarkably, the plasma CK18-Asp396 and total CK18 levels after surgical removal of the tumor were also predictive of disease-free survival, with patients with high levels having a HR of 3.78 (95% CI: 0.77-18.50) and 4.12 (95% CI: 0.84-20.34), respectively, indicating that these parameters can be used also to monitor patients after surgery.ConclusionCK18-Asp396 and total CK18 levels in the circulation of colorectal cancer patients are predictive of tumor progression and prognosis and might be helpful for treatment selection and monitoring of these patients

    Acoustic spectral analysis and testing techniques

    Get PDF
    Subjects covered in four reports are described including: (1) mathematical techniques for combining decibel levels of octaves or constant bandwidth: (2) techniques for determining equation for power spectral density function; (3) computer program to analyze acoustical test data; and (4) computer simulation of horn responses utilizing hyperbolic horn theory

    Stagnation and Infall of Dense Clumps in the Stellar Wind of tau Scorpii

    Full text link
    Observations of the B0.2V star tau Scorpii have revealed unusual stellar wind characteristics: red-shifted absorption in the far-ultraviolet O VI resonance doublet up to +250 km/s, and extremely hard X-ray emission implying gas at temperatures in excess of 10^7 K. We describe a phenomenological model to explain these properties. We assume the wind of tau Sco consists of two components: ambient gas in which denser clumps are embedded. The clumps are optically thick in the UV resonance lines primarily responsible for accelerating the ambient wind. The reduced acceleration causes the clumps to slow and even infall, all the while being confined by the ram pressure of the outflowing ambient wind. We calculate detailed trajectories of the clumps in the ambient stellar wind, accounting for a line radiation driving force and the momentum deposited by the ambient wind in the form of drag. We show these clumps will fall back towards the star with velocities of several hundred km/sec for a broad range of initial conditions. The infalling clumps produce X-ray emitting plasmas with temperatures in excess of (1-6)x10^7 K in bow shocks at their leading edge. The infalling material explains the peculiar red-shifted absorption wings seen in the O VI doublet. The required mass loss in clumps is 3% - 30% ofthe total mass loss rate. The model developed here can be generally applied to line-driven outflows with clumps or density irregularities. (Abstract Abridged)Comment: To appear in the ApJ (1 May 2000). 24 pages, including 6 embedded figure

    MMP-2 geno-phenotype is prognostic for colorectal cancer survival, whereas MMP-9 is not.

    Get PDF
    The prognostic significance of single-nucleotide polymorphisms (SNPs) and tumour protein levels of MMP-2 and MMP-9 was evaluated in 215 colorectal cancer patients. Single-nucleotide polymorphism MMP-2(-1306T) and high MMP-2 levels were significantly associated with worse survival. Extreme tumour MMP-9 levels were associated with poor prognosis but SNP MMP-9(-1562C>T) was not. Tumour MMP levels were not determined by their SNP genotypes

    Where's the Doughnut? LBV bubbles and Aspherical Fast Winds

    Get PDF
    In this paper we address the issue of the origin of LBV bipolar bubbles. Previous studies have explained the shapes of LBV nebulae, such as η\eta Car, by invoking the interaction of an isotropic fast wind with a previously deposited, slow aspherical wind (a ``slow torus''). In this paper we focus on the opposite scenario where an aspherical fast wind expands into a previously deposited isotropic slow wind. Using high resolution hydrodynamic simulations, which include the effects of radiative cooling, we have completed a series of numerical experiments to test if and how aspherical fast winds effect wind blown bubble morphologies. Our experiments explore a variety of models for the latitudinal variations of fast wind flow parameters. The simulations demonstrate that aspherical fast winds can produce strongly bipolar outflows. In addition the properties of outflows recover some important aspects of LBV bubbles which the previous "slow torus" models can not.Comment: 23 pages, 6 figures, to appear the Astrophysical Journa
    • 

    corecore