1,300 research outputs found

    Genetic markers validate using the natural phenotypic characteristics of shed feathers to identify individual northern goshawks Accipiter gentilis

    Get PDF
    Acknowledgements We are grateful to S. Piertney for allowing access to laboratory facilities and to M. Wenzel, R. Ogden and G. Murray-Dickson for their advice on genetic methods. This research was partly funded by a Natural Environment Research Council studentship NE/J500148/1 to SH and by Natural Research Limited.Peer reviewedPublisher PD

    Hofstadter butterflies of carbon nanotubes: Pseudofractality of the magnetoelectronic spectrum

    Get PDF
    The electronic spectrum of a two-dimensional square lattice in a perpendicular magnetic field has become known as the Hofstadter butterfly [Hofstadter, Phys. Rev. B 14, 2239 (1976).]. We have calculated quasi-one-dimensional analogs of the Hofstadter butterfly for carbon nanotubes (CNTs). For the case of single-wall CNTs, it is straightforward to implement magnetic fields parallel to the tube axis by means of zone folding in the graphene reciprocal lattice. We have also studied perpendicular magnetic fields which, in contrast to the parallel case, lead to a much richer, pseudofractal spectrum. Moreover, we have investigated magnetic fields piercing double-wall CNTs and found strong signatures of interwall interaction in the resulting Hofstadter butterfly spectrum, which can be understood with the help of a minimal model. Ubiquitous to all perpendicular magnetic field spectra is the presence of cusp catastrophes at specific values of energy and magnetic field. Resolving the density of states along the tube circumference allows recognition of the snake states already predicted for nonuniform magnetic fields in the two-dimensional electron gas. An analytic model of the magnetic spectrum of electrons on a cylindrical surface is used to explain some of the results.Comment: 14 pages, 12 figures update to published versio

    Towards analytical approaches to the dynamical-cluster approximation

    Full text link
    I introduce several simplified schemes for the approximation of the self-consistency condition of the dynamical cluster approximation. The applicability of the schemes is tested numerically using the fluctuation-exchange approximation as a cluster solver for the Hubbard model. Thermodynamic properties are found to be practically indistinguishable from those computed using the full self-consistent scheme in all cases where the non-interacting partial density of states is replaced by simplified analytic forms with matching 1st and 2nd moments. Green functions are also compared and found to be in close agreement, and the density of states computed using Pad\'{e} approximant analytic continuation shows that dynamical properties can also be approximated effectively. Extensions to two-particle properties and multiple bands are discussed. Simplified approaches to the dynamical cluster approximation should lead to new analytic solutions of the Hubbard and other models

    Spontaneous decay dynamics in atomically doped carbon nanotubes

    Full text link
    We report a strictly non-exponential spontaneous decay dynamics of an excited two-level atom placed inside or at different distances outside a carbon nanotube (CN). This is the result of strong non-Markovian memory effects arising from the rapid variation of the photonic density of states with frequency near the CN. The system exhibits vacuum-field Rabi oscillations, a principal signature of strong atom-vacuum-field coupling, when the atom is close enough to the nanotube surface and the atomic transition frequency is in the vicinity of the resonance of the photonic density of states. Caused by decreasing the atom-field coupling strength, the non-exponential decay dynamics gives place to the exponential one if the atom moves away from the CN surface. Thus, atom-field coupling and the character of the spontaneous decay dynamics, respectively, may be controlled by changing the distance between the atom and CN surface by means of a proper preparation of atomically doped CNs. This opens routes for new challenging nanophotonics applications of atomically doped CN systems as various sources of coherent light emitted by dopant atoms.Comment: 10 pages, 4 figure

    PCN149 DECIDING UPON NEW AND EXPENSIVE TECHNOLOGIES IN HEALTH CARE: REAL OPTIONS ANALYSIS IN PROTON THERAPY

    Get PDF

    Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series

    Get PDF
    With the aim to obtain novel compounds possessing both strong affinity against human carbonic anhydrases and low toxicity, we synthesised novel thiourea and sulphonamide derivatives 3, 4 and 10, and studied their in vitro inhibitory properties against human CA I, CA II and CA IX. We also evaluated the toxicity of these compounds using zebrafish larvae. Among the three compounds, derivative 4 showed efficient inhibition against hCA II (KI = 58.6 nM). Compound 10 showed moderate inhibition against hCA II (KI = 199.2 nM) and hCA IX (KI = 147.3 nM), whereas it inhibited hCA I less weakly at micromolar concentrations (KI = 6428.4 nM). All other inhibition constants for these compounds were in the submicromolar range. The toxicity evaluation studies showed no adverse effects on the zebrafish larvae. Our study suggests that these compounds are suitable for further preclinical characterisation as potential inhibitors of hCA I, II and IX
    corecore