33 research outputs found

    Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria

    Get PDF
    The aim of the present study was the chemical characterization of some medically relevant essential oils (tea tree, clove, cinnamon bark, thyme and eucalyptus) and the investigation of antibacterial effect of the components of these oils by use of a direct bioautographic method. Thin layer chromatography (TLC) was combined with biological detection in this process. The chemical composition of the oils was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Eucalyptol (84.2%) was the main component of the essential oil of eucalyptus, eugenol (83.7%) of clove oil, and trans-cinnamic aldehyde (73.2%), thymol (49.9%) and terpinen-4-ol (45.8%) of cinnamon bark, thyme and tea tree oils, respectively. Antibacterial activity of the separated components of these oils, as well as their pure main components (eucalyptol, eugenol, trans-cinnamic aldehyde and thymol) was observed against the Gram-negative luminescence tagged plant pathogenic bacterium Pseudomonas syringae pv. maculicola (Psmlux) and the Gram-negative, naturally luminescent marine bacterium Vibrio fischeri. On the whole, the antibacterial activity of the essential oils could be related to their main components, but the minor constituents may be involved in this process. Trans-cinnamic aldehyde and eugenol were the most active compounds in TLC-bioautography. The sensitivity of TLC-bioautographic method can be improved with using luminescent test bacteria. This method is more cost-effective and provides more reliable results in comparison with conventional microbiological methods, e.g. disc-diffusion technique

    Layer-by-layer technique to developing functional nanolaminate films with antifungal activity

    Get PDF
    The layer-by-layer (LbL) deposition method was used to build up alternating layers (five) of different polyelectrolyte solutions (alginate, zein-carvacrol nanocapsules, chitosan and chitosan-carvacrol emulsions) on an aminolysed/charged polyethylene terephthalate (A/C PET) film. These nanolaminated films were characterised by contact angle measurements and through the determination of water vapour (WVTR) and oxygen (O2TR) transmission rates. The effect of active nanolaminated films against the Alternaria sp. and Rhizopus stolonifer was also evaluated. This procedure allowed developing optically transparent nanolaminated films with tuneable water vapour and gas properties and antifungal activity. The water and oxygen transmission rate values for the multilayer films were lower than those previously reported for the neat alginate or chitosan films. The presence of carvacrol and zein nanocapsules significantly decreased the water transmission rate (up to 40 %) of the nanolaminated films. However, the O2TR behaved differently and was only improved (up to 45 %) when carvacrol was encapsulated, i.e. nanolaminated films prepared by alternating alginate with nanocapsules of zein-carvacrol layers showed better oxygen barrier properties than those prepared as an emulsion of chitosan and carvacrol. These films containing zein-carvacrol nanocapsules also showed the highest antifungal activity (30 %), which did not significantly differ from those obtained with the highest amount of carvacrol, probably due to the controlled release of the active agent (carvacrol) from the zein-carvacrol nanocapsules. Thus, this work shows that nanolaminated films prepared with alternating layers of alginate and zein-carvacrol nanocapsules can be considered to improve the shelf-life of foodstuffs.The authors acknowledge financial support from FP7 IP project BECOBIOCAP^. M. J. Fabra is recipients of a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitivity. Maria L. Flores-López thanks Mexican Science and Technology Council (CONACyT, Mexico) for PhD fellowship support (CONACyT Grant Number 215499/310847). The author Miguel A. Cerqueira is a recipient of a fellowship (SFRH/BPD/72753/2010) supported by Fundação para a Ciência e Tecnologia, POPH-QREN and FSE (FCT, Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP- 01-0124-FEDER-027462) and the project BBioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,^ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER. The support of EU Cost Action FA0904 is gratefully acknowledged

    The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa

    No full text
    Aims:  To demonstrate that the nonlinear concentration-dependent inhibition of Pseudomonas aeruginosa to EDTA can be used to successfully model and predict the potentiation of antimicrobials by EDTA. Methods and Results:  A model used successfully to describe the concentration-dependent inhibition of bacterial growth caused by many antimicrobials was unable to describe the inhibition of P. aeruginosa by EDTA. Examination of the inhibition profiles for EDTA against P. aeruginosa revealed a biphasic inhibitory pattern suggesting different mechanisms of action at different concentrations. A modelled, two-stage inhibitory process was shown to fit the observations. This model was then used to examine the effect of combining EDTA with other antimicrobials. The apparent synergy of mixtures of EDTA with quaternary ammonium surfactants (QAC) and specific antibiotics was successfully modelled. Minimum inhibitory concentrations (MIC) of the QAC and that of oxacillin and cefamandole were reduced by a factor of 3–10, whereas ampicillin was reduced by a factor of 70 from an MIC of 1524 to 21 mg l−1 in the presence of 500 mg l−1 of EDTA. Conclusions:  A nonlinear concentration-dependent inhibition of P. aeruginosa by EDTA gives rise to apparent observation of synergy with other antimicrobials. Significance and Impact of the Study: This is a further example where the current methodology for the examination of antimicrobial synergy (the summed fractional inhibitory concentrations) leads to false conclusions

    Theory of antimicrobial combinations: biocide mixtures – synergy or addition?

    No full text
    AIMS: To demonstrate the effect that non-linear dose responses have on the appearance of synergy in mixtures of antimicrobials. METHODS AND RESULTS: A mathematical model, which allows the prediction of the efficacy of mixtures of antimicrobials with non-linear dose responses, was produced. The efficacy of antimicrobial mixtures that would be classified as synergistic by time-kill methodology was shown to be a natural consequence of combining antimicrobials with non-linear dose responses. CONCLUSIONS: The effectiveness of admixtures of biocides and other antimicrobials with non-linear dose responses can be predicted. If the dose response (or dilution coefficient) of any biocidal component, in a mixture, is other than one, then the time-kill methodology used to ascertain the existence of synergy in antimicrobial combinations is flawed. SIGNIFICANCE AND IMPACT OF THE STUDY: The kinetic model developed allows the prediction of the efficacy of antimicrobial combinations. Combinations of known antimicrobials, which reduce the time taken to achieve a specified level of microbial inactivation, can be easily assessed once the kinetic profile of each component has been obtained. Most patented cases of antimicrobial synergy have not taken into account the possible effect of non-linear dose responses of the component materials. That much of the earlier literature can now be predicted, suggests that future cases will require more thorough proof of the alleged synergy

    A rapid method for assessing the suitability of quenching agents for individual biocides as well as combinations

    No full text
    Aims: To develop a novel, rapid method for testing the ability of quenching agents to neutralize disinfectants. Methods and Results: Tests were performed to determine the suitability of different neutralizers for a range of disinfectants, using a new method based on the Bioscreen optical density analyser. Results showed that during disinfection tests, efficacy could be over-estimated due to poor, or no, neutralization of the disinfectant after a specified time of exposure to the bacteria. The failure to distinguish adequately between bacteriostatic and bactericidal effects can lead to false results during disinfectant testing. Experiments also showed that dilution of the disinfectant, following exposure to the bacteria, was not always sufficient to stop the activity of the disinfectant for chemicals with low dilution coefficients. Conclusions: The quench test proved to be very quick and easy to perform, with results being available within 18 h. Using the Bioscreen, the test is automated and determines whether dilution into a particular neutralizer is able to inactivate a disinfectant within 30 s. Significance and Impact of the Study: This new approach allows the efficacy of quenching agents to be determined, prior to undertaking each disinfection study, and can help in the development of more suitable quenching solutions. The test has also been used to find suitable neutralizers for mixtures of disinfectants which might be used during studies on synergistic biocide combinations
    corecore