1,112 research outputs found
Effects of the Nearest-Neighbour Coulomb Interactions on the Ground State of the Periodic Anderson Model
The magnetic and non-magnetic ground states of the periodic Anderson model
with Coulomb interaction between -electrons on the nearest-neighbour(NN)
sites are investigated using a variational method, which gives exact
calculation of the expectation values in the limit of infinite dimensions. It
is shown that for a critical value of NN Coulomb interactions the magnetic
ground state of the periodic Anderson model in the Kondo regime is unstable.
Factors in terms of the physical processes responsible for instability of the
magnetic ground state are also discussed. Our study indicates the importance of
the NN Coulomb interactions for correlated two band models.Comment: RevTeX, 6 pages, 5 figures, to appear in Phys. Rev.
A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator
The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ∼71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ∼10 kW for ∼50 ns
A novel AhR ligand, 2AI, protects the retina from environmental stress.
Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice
Almost sure stability of the Euler-Maruyama method with random variable stepsize for stochastic differential equations
In this paper, the Euler–Maruyama (EM) method with random variable stepsize is studied to reproduce the almost sure stability of the true solutions of stochastic differential equations. Since the choice of the time step is based on the current state of the solution, the time variable is proved to be a stopping time. Then the semimartingale convergence theory is employed to obtain the almost sure stability of the random variable stepsize EM solution. To our best knowledge, this is the first paper to apply the random variable stepsize (with clear proof of the stopping time) to the analysis of the almost sure stability of the EM method
Mutational profiling of kinases in glioblastoma
Background: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma.Methods: Database mining and a literature search identified 76 kinases that have been found to be mutated at least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade glioma (HGG) cell lines were sequenced. Results: Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25 have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR, BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed that the large majority of them plays a central role in the PI3K-AKT pathway. Conclusions: The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas. However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in gliomagenesis that involve both kinases and non-kinases
Maternal mortality: a tertiary centre panic
Background: Maternal death has a serious implication on the family, society and nation. The preventable and avoidable factors have been noted in most of the maternal deaths and these can be reduced by effective and affordable actions. The objective of present study was to evaluate the causes of maternal mortality in a tertiary care hospital, assess its epidemiological aspects and suggest remedial measures to reduce the same.Methods: A retrospective study of all hospital records and death summaries of all maternal deaths over a period of 16 months from April 2015 to July 2016 was carried out and epidemiological factors and causes affecting maternal mortality were assessed.Results: A total of 100 maternal deaths occurred over a period of 15 months out of which unbooked and late referrals constituted 75.55 % of maternal deaths. Most maternal deaths occurred in the age group of 20–30 years, multiparous women (73%) and women from rural areas (71.%). Direct obstetric causes were responsible for 91 maternal deaths whereas 50 maternal deaths were due to indirect causes. Most common cause of death (41) was hemorrhage, followed by pregnancy-induced hypertension including eclampsia (15) and sepsis (21).Conclusions: Hemorrhage, sepsis and hypertension including eclampsia were seen as the direct major causes of death. There is a wide scope of improvement because a large proportion of the observed deaths are preventable
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Thermoelastic analysis of a nonhomogeneous hollow cylinder with internal heat generation
In the present paper, we have determined the heat conduction and thermal stresses of a hollow cylinder with inhomogeneous material properties and internal heat generation. All the material properties except Poisson’s ratio and density are assumed to be given by a simple power law in axial direction. We have obtained the solution of the two dimensional heat conduction equation in the transient state in terms of Bessel’s and trigonometric functions. The influence of inhomogeneity on the thermal and mechanical behavior is examined. Numerical computations are carried out for both homogeneous and nonhomogeneous cylinders and are represented graphically
Thermal stress analysis in a functionally graded hollow elliptic-cylinder subjected to uniform temperature distribution
In this paper, an analytical method of a thermoelastic problem for a medium with functionally graded material properties is developed in a theoretical manner for the elliptic-cylindrical coordinate system under the assumption that the material properties except for Poisson’s ratio and density are assumed to vary arbitrarily with the exponential law in the radial direction. An attempt has been made to reconsider the fundamental system of equations for functionally graded solids in a two-dimensional state under thermal and mechanical loads. The general solution of displacement formulation is obtained by the introduction of appropriate transformation and carried out the analysis by taking into account the variation of inhomogeneity parameters. Furthermore, the aforementioned problem degenerated into the problem of the circular region by applying limiting conditions, and the results are validated. Numerical computations are carried out for ceramic-metal-based functionally graded material, in which zirconia is selected as ceramic and aluminium as metal and are represented graphically
- …
