
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 12 Issue 1 Article 40 

6-2017 

Thermal stress analysis in a functionally graded hollow elliptic-Thermal stress analysis in a functionally graded hollow elliptic-

cylinder subjected to uniform temperature distribution cylinder subjected to uniform temperature distribution 

V. R. Manthena 
RTM Nagpur University 

N. K. Lamba 
Shri Lemdeo Patil Mahavidyalaya 

G. D. Kedar 
RTM Nagpur University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Analysis Commons, Ordinary Differential Equations and Applied Dynamics Commons, and 

the Other Physics Commons 

Recommended Citation Recommended Citation 
Manthena, V. R.; Lamba, N. K.; and Kedar, G. D. (2017). Thermal stress analysis in a functionally graded 
hollow elliptic-cylinder subjected to uniform temperature distribution, Applications and Applied 
Mathematics: An International Journal (AAM), Vol. 12, Iss. 1, Article 40. 
Available at: https://digitalcommons.pvamu.edu/aam/vol12/iss1/40 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol12
https://digitalcommons.pvamu.edu/aam/vol12/iss1
https://digitalcommons.pvamu.edu/aam/vol12/iss1/40
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol12/iss1/40?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol12%2Fiss1%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


613 

 

 

Thermal stress analysis in a functionally graded hollow elliptic-

cylinder subjected to uniform temperature distribution 
 

V. R. Manthena
a
, N. K. Lamba

b
, G. D. Kedar

a
 

 

a
Department of Mathematics 

RTM Nagpur University 

Nagpur, India 

 
b
Department of Mathematics 

Shri Lemdeo Patil Mahavidyalaya 

Nagpur, India 

vkmanthena@gmail.com 

 

Received November 30, 2016; Accepted March 9, 2017 

 

Abstract 
 

In this paper, an analytical method of a thermoelastic problem for a medium with functionally 

graded material properties is developed in a theoretical manner for the elliptic-cylindrical 

coordinate system under the assumption that the material properties except for Poisson’s ratio and 

density are assumed to vary arbitrarily with the exponential law in the radial direction. An attempt 

has been made to reconsider the fundamental system of equations for functionally graded solids in 

a two-dimensional state under thermal and mechanical loads. The general solution of displacement 

formulation is obtained by the introduction of appropriate transformation and carried out the 

analysis by taking into account the variation of inhomogeneity parameters. Furthermore, the 

aforementioned problem degenerated into the problem of the circular region by applying limiting 

conditions, and the results are validated. Numerical computations are carried out for ceramic-

metal-based functionally graded material, in which zirconia is selected as ceramic and aluminium 

as metal and are represented graphically.  

 

Keywords:  Elliptic Cylinder; Uniform Temperature; Thermal Stresses; Functionally Graded 

Material; Inhomogeneity; Exponential Law; Thermal Load; Mechanical Load 
 

AMS-MSC 2010 No.: 30E25; 34B05; 44A10; 74L05 
 

1.   Introduction 
 

In the present day of designing applications, curved structures are being utilized widely due to the 

integrated advantage of amalgamating physical, mechanical, as well as thermal properties of 

various materials compared to objects of other shapes. Many of these applications require a 
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complete cognizance of transient temperature and heat flux distribution within the elliptical 

profiles. Things get further complicated and unpredictable once sectional heat supply is impacted 

on the object under consideration. Both analytical and numerical techniques are the most used 

methods to unravel such issues. Nonetheless, numerical solutions are preferred and prevalent in 

practice, due to either unavailability or higher mathematical complexity of the corresponding exact 

solutions.  Exact solutions find their applications in validating and comparing various numerical 

algorithms to help improve the computational efficiency of computer codes that currently rely on 

numerical techniques. Although heat conduction problems for elliptical profile shape have been 

studied in great detail and various solution methods have been arrived at, one notable exception is 

an elliptical nuclear fuel rod, which is a new type of nuclear fuel rod included in nuclear reactors. 

 

One-dimensional calculation of thermal residual stresses, arising from the fabrication of a 

functionally graded material (FGM) and pressurized thick-walled hollow circular cylinder are 

studied by Ravichandran (1995) and Nejad and Rahimi (2009). Zimmerman and Lutz (1999) 

derived the exact solution for the problem of uniformly heating cylinder whose elastic moduli and 

thermal expansion coefficient vary linearly with radius and found that the effective thermal 

expansion coefficient is essentially given by the volumetric average of the local thermal expansion 

coefficient, with the variation in moduli having only a small effect. Chen et al. (2001, 2002) 

studied the axisymmetric thermoelastic problem of a functionally graded transversely isotropic 

cylindrical shell and hollow cylinder due to uniform heat supply. Ootao and Tanigawa (2005) 

presented the theoretical treatment of transient thermoelastic problem involving a functionally 

graded hollow cylinder due to uniform heat supply by expressing the thermal and thermoelastic 

constants of the hollow cylinder as power functions of the radial coordinate. Noda et al. (2012) 

studied the theoretical treatment of a transient thermoelastic problem involving a functionally 

graded solid circular disk with piecewise power law due to uniform heat supply from an outer 

surface. The thermal conductivity, Young's modulus and the coefficient of linear thermal 

expansion of each layer, except the first inner layer, are expressed as power functions of the radial 

coordinate.  
 

Tutuncu (2007) obtained the power series solutions for stresses and displacements in functionally 

graded cylindrical vessels subjected to internal pressure alone using the infinitesimal theory of 

elasticity by assuming the material to be isotropic with constant Poisson’s ratio and exponentially-

varying elastic modulus through the thickness. Abrinia et al. (2008) presented an analytical 

solution for computing the radial and circumferential stresses in an FGM thick cylindrical vessel 

under the influence of internal pressure and temperature is presented in this paper. Foroutan et al. 

(2011) carried out static analysis of FGM cylinders subjected to internal and external pressure by a 

mesh-free method by assuming the mechanical properties to vary in the radial direction. Ghannad 

and Gharooni (2012) presented displacements and stresses based on the high-order shear 

deformation theory (HSDT) for axisymmetric thick- walled cylinders made of functionally graded 

materials under internal and/or external uniform pressure, using the infinitesimal theory of 

elasticity and analytical formulation. Nejad et al. (2012) derived exact closed-form solutions for 

stresses and the displacements in thick spherical shells made of functionally graded materials with 

exponential-varying properties subjected to internal and external pressure. Ghannad and Gharooni 

(2013) obtained displacements and stresses in a rotating functionally graded pressurized thick-

walled hollow circular cylindrical shell based on the first-order shear deformation theory (FSDT), 

using the infinitesimal theory of elasticity and analytical formulation. The material properties are 
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assumed to be isotropic heterogeneous with constant Poisson’s ratio and radially exponentially 

varying modulus of elasticity and density. Kursun et al. (2014) studied thermal elastic stress 

distribution occurred on long hollow cylinders made of FGM under thermal, mechanical and 

thermomechanical loads. Takabi (2016) presented an analytical and a numerical thermomechanical 

investigation of a thick walled cylinder made of the FGMs subjected to a pressure and a thermal 

load, and the properties of this material are varying across the thickness from the inner face that is 

a ceramic to the outer one which is a metal.  

 

Topal and Gulgec (2009) considered the plane strain problem for a functionally graded solid 

cylinder with thermal energy generation under the effect of convective heat transfer and 

determined the thermal stresses. Hosseini and Akhlaghi (2009) studied transient thermal stresses in 

a thick hollow cylinder made of an FGM by considering the material properties to be nonlinear 

with a power law distribution through the thickness, and the cylinder is assumed to be of infinite 

length. Khorshidvand et al. (2010, 2012) presented a new solution for one-dimensional steady-state 

mechanical and thermal stresses in an FG rotating thick hollow cylinder by assuming the 

temperature distribution to be a function of radius along the thickness, with general thermal and 

mechanical boundary conditions on surfaces of the cylinder.  

 

From the above literature review, it is observed that several kinds of boundary value problems in 

an axisymmetrical or one-dimensional state have been studied. However, it is obviously seen that 

the fundamental equation system proposed is not sufficient to solve thermoelastic boundary value 

problems under thermal and mechanical loads satisfying all the mechanical boundary conditions. 

To fill this gap, the two arbitrary constants from the second order differential equation are obtained 

using mechanical boundary conditions for two-dimensional axisymmetrical problem.  

 

In the present paper, we have considered a two-dimensional transient thermoelastic problem of an 

elliptic-cylinder occupying the space  zba 0, , subjected to uniform temperature 

distribution. For theoretical treatment, all physical and mechanical quantities are taken as 

dimensional, whereas for numerical computations we have considered non-dimensional 

parameters.  

 

2.  Formulation of the problem 
 

2.1. Statement of governing equations 
 

We consider a functionally graded hollow elliptic-cylinder with thickness  , internal radius a and 

external radius b, occupying the space 

  

:2),{( RzD   ,ba   }0  z ; 

 

defined by the transformation 

 

]/)[(1cosh ciyxi    and zz  . 
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Explicitly, we have  

 

,coshcx  ,sinhcy  zz   and 2/2cosh22 ch 
. 

 

The curves  constant represent a family of confocal hyperbolas while the curves  constant 

represent a family of the confocal ellipse. The length 2c is the distance between their common foci. 

Both sets of curves intersect each other orthogonally at every point in space. The parameter   

varies from a where it defines the interfocal line to b and ),0( z .  The scale factors  

 

),( ziih   in ,)()( 222 dzhdhds z   
 

are given by 

 

;1,222  zhJch
 2cosh)2/1(2 J . 

 

2.2. Basic equations 

 

Now the basic equations of strain displacement relations, stress-strain relations for a functionally 

graded hollow elliptic-cylinder are given by 

 

.,
cosh

1
,

cosh

1

z

u
u

c

u

c

z
zz









 





 


                                (1) 

 

Furthermore, the thermal stress components in terms of strain are given as 
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       


       

                               (2) 

 

in which zz ,, are the strain components,   is Poisson’s ratio, )(E  is the modulus of 

elasticity, STRTT  , RT is the reference temperature and ST is the surrounding temperature, 

)(  represents the coefficient of thermal expansion of the material, and  Lame’s constants are 

given by 
 

)21)(1(

)(
)(









E
, .

)1(

)(
)(









E

 
 

The Navier–Stokes equation can be obtained in terms of strain components as 

 
( )grad[ ( )] 2 grad[ ( )] [ ( ) 2 ( )]

graddiv ( )curlcurl grad[(3 ( ) 2 ( )] ( ) ).

zz

u u T

             

       

    

    
               (3) 
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Substituting Equation (1) in Equations (3), we obtain the expressions for the complete Navier–

Stokes equation in terms of displacement as 

 

                                      

2
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 

                                 (4) 

 

2.3. Boundary conditions 

 

For a complete solution to the thermoelastic problem, displacement field is to be determined such 

that for 0T , there is zero traction on all surfaces of the hollow elliptic cylinder. Thus, we 

assume the following conditions as 

 

a. Zero traction conditions on the inner and outer curved surfaces 

 

0 , 0z  at  ., ba                                                           (5) 

 

b. For the hollow cylinder subjected to time dependent pressures )(tiP  and )(toP  on the inner 

and outer surfaces, the mechanical boundary conditions can be expressed as 

 

).(),( tPtP obia


                                              (6) 

 

c. Zero normal force on ,0z : 

 

.02  b
a zz d                                                                             (7) 

  

d. Boundary conditions of the finite-length cylinder is assumed to be simply supported at the 

two longitudinal edges, i.e., 
 

0u , 0zz , 0z , 0z  at  .,0 z                            (8) 

 

The Equations (1) to (8) constitute the mathematical formulation of the problem under 

consideration. 
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3.  Reformulation of the problem 
 

We consider the case in which the functionally graded material with non-constant elastic 

parameters material properties vary radially according to exponential law as 

 

).exp()(,)exp()( 2010  mmEE                                           (9) 

 

where 0E  and 0  are the reference values of  modulus of elasticity and coefficient of thermal 

expansion respectively, 1m  and 2m  are the material parameters whose combination forms a wide 

range of nonlinear and continuous profiles to describe the reasonable variation of material 

constants and thermal expansion coefficients. 
 

In order to solve the fundamental Equation (4) taking into account Equation (9), we introduce a 

new function as 
 

.)(,0)( Gzzuu z                                                                        (10) 

 

in which G is the unknown constant (that is, independent of variable ) and to be determined. The 

term )(u  represents a radial expansion or contraction in which, in general, the inner and outer 

radii change, but angle remains constant and Gzzzu )(  is a uniform axial extension or 

contraction. 

 

4.  Solution of the problem 
 

The governing Equation (4) can be reformulated by taking into account Equation (9) and Equation 

(10), we obtain the differential equation in the following form 

 

.coshcosh]exp[ 423212

2







AmAuA
d

du
A

d

ud
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(11) 

 

in which 
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Equation (10) is a second order differential equation whose solution is given by 

 

).exp()exp(])1exp[(

])1exp[()exp()exp(

6524

232211


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



BBmB
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(12) 

 

in which 
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By substituting Equation (12) in (2), the stress components are obtained as 
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4.1. Further investigation: 

 

(i) The homogeneous case 

 

For  01 m  and   02 m , one obtains all material constants of the Equation (9) that are 

independent of radial coordinates, then 0)( EE 
 

and  0)(   . Using Equation (13) in 

Equation (6), the constants 1C  and 2C  are obtained as 
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where 
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Using Equation (15) in Equation (8), we get 
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(ii) The inhomogeneous case 

 

For the inhomogeneity parameter 01 m and 02 m , the radial stress expression (13) can be 

utilized taking into account the thermo-mechanical boundary conditions (6) for obtaining the 

constants 1C  and 2C  as 
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where 
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For the nonhomogeneous hollow cylinder, we consider the normal force condition (7) as 
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(19) 

 

Using Equations (7) and (19), the value of unknown coefficient G can be calculated. Since the 

expression of G obtained so was very large, we have not mentioned it here. However, the value of 

G was obtained by means of Mathematica software for numerical computations. 

 

4.2.  Transition to circular plate 

 

When the semi major axis of an elliptic-cylinder degenerates into circular cylinder, we find that  

internal radius a, outer radius ,b occupies the space  

 

}0,:2),{(  zbraRzrD . 
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For that we take  

 

.0,)exp()2/1(.,cosh,0  lrheirhase   

 

Hence, Equation (12) degenerates into the hollow circular cylinder for which the solution of 

displacement function is as follows. 
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This result agrees with Chen et al. (2002). 

 

5.  Numerical results and discussion 

 
The numerical computations are carried out for ceramic-metal-based FGM, in which zirconia is 

selected as ceramic and aluminium as metal, with non-dimensional variables as given below.  
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with parameters cmlcmbcma 2,4,2  , reference temperature Ko
RT 330 , surrounding 

temperature Ko
ST 300 .  

 

The pressures on the inner and outer surfaces are taken as 

 
 

))1cos(1(1)( tQtiP 
 
and .))cos(1()( 22 tQtPo   

 
Table 1. Thermo-mechanical properties of Zirconia and Aluminium at room temperature 

Property Zirconia 

(Ceramic) 
Aluminium 

(Metal) 

Thermal conductivity i ]/[ cmKW  0.282 0.901 

Thermal diffusivity   i ]/2610[ scm  0.083 0.223 

Thermal expansion coefficient i ]/610[ K  5.4 14.0 

Young’s modulus   iE ]2/[ cmN  61036  
6108.21   

Poisson’s ratio       i ][  0.23 0.31 

 

5.1. Time 0  in pressure load 

The following Figures (1 to 8) are plotted by taking time 0 .  

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 12 [2017], Iss. 1, Art. 40

https://digitalcommons.pvamu.edu/aam/vol12/iss1/40



AAM: Intern. J., Vol 12, Issue 1 (June 2017)                                                                                                                623 
 

  

The figures on the left are of homogeneous elliptic-cylinder in which 021 mm , while those on 

the right are of nonhomogeneous elliptic-cylinder in which 02,01  mm . 

 

 
 

                   Homogeneous                                       Non-Homogeneous 

 

Figure 1. Variation of dimensionless displacement along   

 

 

 

Figure 2. Variation of dimensionless displacement along  

 

Figure 1 shows the variation of dimensionless displacement along the radial direction for different 

values of 1,75.0,5.0,25.0,1.0 . It is seen that the nature is linear. For homogeneous elliptic-

cylinder, the absolute value of displacement is low at the curved surface and is gradually 

increasing towards the centre. For nonhomogeneous elliptic-cylinder, the absolute value of 

displacement is low at the curved surface and is gradually increasing towards the centre and is 

peak at 1.1  for 1,75.0 , while it is high at the curved surface and is decreasing towards the 

centre for the remaining values of  .  
 

Figure 2 shows the variation of dimensionless displacement along the axial direction for different 

values of 2,75.1,5.1,25.1,1 .  In the homogeneous case, the absolute value of displacement is 

high at the upper surface and is gradually increasing towards the lower surface. Also it is peak at 

the central part. In the nonhomogeneous case, the absolute value of displacement is positive 

throughout and is becoming high to low from the lower to the upper surface. 
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Figure 3. Variation of dimensionless radial stress along   

 

 

Figure 4. Variation of dimensionless radial stress along  

 

Figure 3 shows the variation of dimensionless radial stress along the radial direction for different 

values of  .  In the homogeneous case, the radial stress is compressive. The absolute value of 

radial stress is gradually increasing from the curved surface towards the centre of the elliptic-

cylinder. Its magnitude is moderate at 1.0 , low at 5.0  and high at 1 . In the 

nonhomogeneous case, it is increasing from the curved surface towards the centre.  

 

Figure 4 shows the variation of dimensionless radial stress along the axial direction for different 

values of  .  In the homogeneous case, the radial stress is tensile in the region 22.00  , 

37.00   and 42.00   for 25.1 , 2,5.1  and 75.1  respectively, whereas 

compressive in the remaining region. The magnitude is high at the lower surface and is decreasing 

towards the upper surface. In the nonhomogeneous case, the absolute value of radial stress is 

slowly decreasing from the lower to the upper surface.  
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Figure 5. Variation of dimensionless tangential stress along   
 

 

Figure 6. Variation of dimensionless tangential stress along  

 

Figure 5 shows the variation of dimensionless tangential stress the along radial direction for 

different values of  .  In the homogeneous case, the tangential stress is tensile for 1,75.0,5.0  

with peak value at 6.1  and compressive for 25.0,1.0 . The absolute value of tangential 

stress is very low at the curved surface. In the nonhomogeneous case, it is steady until 2.1  and 

then gradually decreasing towards the curved surface. Also, the magnitude is low at 1.0 and is 

increasing with the increase in  . 

 

Figure 6 shows the variation of dimensionless tangential stress along the axial direction for 

different values of  .  In the homogeneous case, the tangential stress is tensile in the region 

15.00  , 2.00   and 3.00   for 25.1 , 2,75.1  and 1  respectively, whereas 

compressive in the remaining region. Also, the absolute value is decreasing towards the upper 

surface. In the nonhomogeneous case, it is tensile in the region 2.00  ,  whereas compressive 

in the remaining region. We also observe that the magnitude is low in the nonhomogeneous case as 

compared to that of the homogeneous case. 
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Figure 7. Variation of dimensionless axial stress along   
 

 

Figure 8. Variation of dimensionless axial stress along  

 

Figure 7 shows the variation of dimensionless axial stress along the radial direction for different 

values of  .  In the homogeneous case, the axial stress is tensile in the region 57.11    and 

7.11    for 1.0 and 1,75.0,5.0,25.0  respectively, whereas compressive in the 

remaining region. The axial stress is peak and low at the central part and curved surface 

respectively for all  , but it is very high and low at the central part and curved surface for 1 , 

as compared to the other value of  . In the nonhomogeneous case, it is tensile in the region 

7.11   , whereas compressive in the remaining region for all  . 

 

Figure 8 shows the variation of dimensionless axial stress along the axial direction for different 

values of  .  In the homogeneous case, the axial stress is compressive throughout. Also, the 

absolute value is linearly decreasing from the lower to the upper surface. Also, the magnitude is 

more for 1  and is decreasing with increase in  . In the nonhomogeneous case, we observe 

that it is linearly decreasing from the lower to the upper surface, while the magnitude is more for 

2  and is decreasing with a decrease in  .   

 

5.2. Time 2  in pressure load 

 

The following Figures (9 to 16) are plotted by taking time 2 .  
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                      Homogeneous                                     Non-Homogeneous 

 

Figure 9. Variation of dimensionless displacement along   

 

 

Figure 10. Variation of dimensionless displacement along  

 

Figure 9 shows the variation of dimensionless displacement along the radial direction for different 

values of  . For nonhomogeneous elliptic-cylinder, the displacement is observed to decay 

exponentially from the center towards the outer radius.  

 

Figure 10 shows the variation of dimensionless displacement along the axial direction for different 

values of  . In the homogeneous case, the absolute value of displacement is high at the upper 

surface and is linearly decreasing towards the lower surface. In the nonhomogeneous case, the 

displacement is positive throughout and is sinusoidal in nature.  
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Figure 11. Variation of dimensionless radial stress along   
 

 

 

Figure 12. Variation of dimensionless radial stress along   

 

Figure 11 shows the variation of dimensionless radial stress along the radial direction for different 

values of  .  For both the homogeneous and nonhomogeneous cases, the radial stress is tensile 

near the center and is compressive in the remaining region. Also, the magnitude is more at 

1,1.0 , as compared to remaining values of  .  

 

Figure 12 shows the variation of dimensionless radial stress along the axial direction for different 

values of  .  The radial stress is tensile in the region 7.01.0  , whereas compressive in the 

remaining regions. Also, the magnitude is low in the homogeneous case as compared to the 

nonhomogeneous case.   
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Figure 13. Variation of dimensionless tangential stress along   

 

Figure 14. Variation of dimensionless tangential stress along   

 

Figure 13 shows the variation of dimensionless tangential stress along the radial direction for 

different values of  .  It is seen that nature is sinusoidal. In the homogeneous case, the tangential 

stress is tensile throughout, while in the nonhomogeneous case it is tensile near the inner radius for 

1,75.0 , whereas compressive in the remaining region. 
 

Figure 14 shows the variation of dimensionless tangential stress along the axial direction for 

different values of  . For both the homogeneous and nonhomogeneous cases, the tangential stress 

is tensile in the region 7.02.0  , whereas compressive in the remaining regions.  
 

 

Figure 15. Variation of dimensionless axial stress along   
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Figure 16. Variation of dimensionless axial stress along   

 

Figure 15 shows the variation of dimensionless axial stress along the radial direction for different 

values of  . The axial stress is tensile in the region 7.12.1   , whereas compressive in the 

remaining regions. The axial stress reaches the peak value at 4.1 . Also, the magnitude is low 

in the nonhomogeneous case as compared to that of the homogeneous case. 

 

Figure 16 shows the variation of dimensionless axial stress along the axial direction for different 

values of  . The axial stress is tensile in the region 3.00  , whereas compressive in the 

remaining region. Also, it is converging to zero at 3.0 . 

 

6.  Conclusion 
 

In the present paper, we have investigated displacement and thermal stresses in a thick hollow 

elliptic-cylinder subjected to uniform heating. The material properties except for Poisson’s ratio 

and density are considered to vary by exponential law along the axial direction. Furthermore, the 

influence of homogeneity and inhomogeneity grading is investigated by changing parameters

2,1 mm . 

 

During this investigation, the following results are obtained.  

 

(1)  The nature of displacement and all stresses is found to be linear when plotted along radial and 

axial directions for a time 0 , whereas all the stresses are found to be sinusoidal for a time 

.2  

 

(2)  In the case of nonhomogeneous elliptic-cylinder, the magnitude of stresses is found to be low, 

whereas for homogeneous elliptic-cylinder it is high. 

 

(3)  The stresses are both tensile and compressive in different regions for different values of   

and  . 
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(4)  Special cases can also be studied by assigning suitable values to the material parameters in the 

equations of displacement and thermal stresses as well as by taking some different material for 

numerical computation. 
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