153 research outputs found

    Doppler-Free Spectroscopy of Weak Transitions: An Analytical Model Applied to Formaldehyde

    Full text link
    Experimental observation of Doppler-free signals for weak transitions can be greatly facilitated by an estimate for their expected amplitudes. We derive an analytical model which allows the Doppler-free amplitude to be estimated for small Doppler-free signals. Application of this model to formaldehyde allows the amplitude of experimentally observed Doppler-free signals to be reproduced to within the experimental error.Comment: 7 pages, 7 figures, 1 table, v2: many small improvements + corrected line assignmen

    Measurement precision and evaluation of the diameter profiles of single wool fibers

    Full text link
    A recent model of the Single Fiber Analyzer 3001 (SIFAN3001) was firstly employed to obtain the single wool fiber diameter profiles (SfFDPs) at multiple orientations. The results showed that using SIFAN3001 to measure fiber diameter at four orientations for 50 single fibers randomly sub-sampled from each mid-side sample can produce average fiber diameter profiles (AS fFDPs) of fibers within staples. Within the testing regime used, the precision estimates for the total samples were &plusmn;1.3 &micro;m for the mean fiber diameter of staples and 1.4 &micro;m for the average fiber diameter of the AS fFDPs at each scanned step in the diameter profile. The mean diameter ratio (ellipticity) obtained from the four orientations was 1.08&plusmn;0.01, confirming that the Merino wool fibers under review were elliptical rather than circular. The elliptical morphology of wool fibers and the precision of the fiber diameter measurement at each point along a fiber will be considered in the development of a mechanical model of Staple Strength testing.<br /

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    El Apego Va a Juicio: Problemas de Custodia y Protección Infantil1

    Get PDF
    Attachment theory and research are drawn upon in many applied settings, including family courts, but misunderstandings are widespread and sometimes result in misapplications. The aim of this consensus statement is, therefore, to enhance understanding, counter misinformation, and steer family-court utilisation of attachment theory in a supportive, evidence-based direction, especially with regard to child protection and child custody decision-making. This article is divided into two parts. In the first part, we address problems related to the use of attachment theory and research in family courts, and discuss reasons for these problems. To this end, we examine family court applications of attachment theory in the current context of the best-interest-of-the-child standard, discuss misunderstandings regarding attachment theory, and identify factors that have hindered accurate implementation. In the second part, we provide recommendations for the application of attachment theory and research. To this end, we set out three attachment principles: the child’s need for familiar, non-abusive caregivers; the value of continuity of good-enough care; and the benefits of networks of attachment relationships. We also discuss the suitability of assessments of attachment quality and caregiving behaviour to inform family court decision-making. We conclude that assessments of caregiver behaviour should take center stage. Although there is dissensus among us regarding the use of assessments of attachment quality to inform child custody and child-protection decisions, such assessments are currently most suitable for targeting and directing supportive interventions. Finally, we provide directions to guide future interdisciplinary research collaboration

    Sloan digital sky survey multicolor observations of GRB 010222

    Get PDF
    The discovery of an optical counterpart to GRB 010222 (detected by BeppoSAX) was announced 4.4 hr after the burst by Henden. The Sloan Digital Sky Survey's 0.5 m photometric telescope (PT) and 2.5 m survey telescope were used to observe the afterglow of GRB 010222 starting 4.8 hr after the gamma-ray burst. The 0.5 m PT observed the afterglow in five 300 s g*-band exposures over the course of half an hour, measuring a temporal decay rate in this short period of Fv ∝ t-1±0.5. The 2.5 m camera imaged the counterpart nearly simultaneously in five filters (u*, g*, r*, i*, z*), with r* = 18.74 ± 0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglow's temporal decay, are well-fitted by the power law Fv ∝ v-0.90±0.03 with the exception of the u*-band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star-forming region

    Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA

    Get PDF

    Inelastic photoproduction of J/Psi mesons at HERA

    No full text
    An analysis of inelastic photoproduction of J/Psi mesons is presented using data collected at the ep collider HERA corresponding to an integrated luminosity of above 80pb-1. Differential and double differential cross sections are measured in a wide kinematic region: 6
    corecore