4 research outputs found

    Upper density problems in infinite Ramsey theory

    Get PDF
    We consider the following question in infinite Ramsey theory, introduced by Erdős and Galvin [EG93] in a particular case and by DeBiasio and McKenney [DM19] in a more general setting. Let H be a countably infinite graph. If the edges of the complete graph on the natural numbers are colored red or blue, what is the maximum value of λ such that we are guaranteed to find a monochromatic copy of H whose vertex set has upper density at least λ? We call this value the Ramsey density of H. The problem of determining the Ramsey density of the infinite path was first studied by Erdős and Galvin, and was recently solved by Corsten, DeBiasio, Lang and the author [CDLL19]. In this thesis we study the problem of determining the Ramsey density of arbitrary graphs H. On an intuitive level, we show that three properties of a graph H have an effect on the Ramsey density: the chromatic number, the number of components, and the expansion of its independent sets. We deduce the exact value of the Ramsey density for a wide variety of graphs, including all locally finite forests, bipartite factors, clique factors and odd cycle factors. We also determine the value of the Ramsey density of all locally finite graphs, up to a factor of 2. We also study a list coloring variant of the same problem. We show that there exists a way of assigning a list of size two to every edge in the complete graph on N such that, in every list coloring, there are monochromatic paths with density arbitrarily close to 1.Wir betrachten die folgende Fragestellung aus der Ramsey-Theorie, welche von Erdős und Galvin [EG93] in einem Spezialfall sowie von DeBiasio und McKenney [DM19] in einem allgemeineren Kontext formuliert wurde: Es sei H ein abzählbar unendlicher Graph. Welches ist der größtmögliche Wert λ, sodass wir, wenn die Kanten des vollständigen Graphen mit Knotenmenge N jeweils entweder rot oder blau gefärbt sind, stets eine einfarbige Kopie von H, dessen Knotenmenge eine obere asymptotische Dichte von mindestens λ besitzt, finden können? Wir nennen diesen Wert die Ramsey-Dichte von H. Das Problem, die Ramsey-Dichte des unendlichen Pfades zu bestimmen wurde erstmals von Erdős und Galvin untersucht und wurde vor kurzem von Corsten, DeBiasio, Lang und dem Autor [CDLL19] gelöst. Gegenstand der vorliegenden Dissertation ist die Bestimmung der Ramsey-Dichten von Graphen. Auf einer intuitiven Ebene zeigen wir, dass drei Parameter eines Graphen die Ramsey-Dichte beeinflussen: die chromatische Zahl, die Anzahl der Zusammenhangskomponenten sowie die Expansion seiner unabhängigen Mengen. Wir ermitteln die exakten Werte der Ramsey-Dichte für eine Vielzahl von Graphen, darunter alle lokal endlichen Wälder, bipartite Faktoren, Kr-Faktoren sowie Ck-Faktoren für ungerade k. Ferner bestimmen wir den Wert der Ramsey-Dichte aller lokal endlichen Graphen bis auf einen Faktor 2. Darüber hinaus untersuchen wir eine Variante des oben beschriebenen Problems für Listenfärbungen. Wir zeigen, dass es möglich ist, jeder Kante des vollständigen Graphen mit Knotenmenge N eine Liste der Größe Zwei zuzuweisen, sodass in jeder zugehörigen Listenfärbung monochromatische Pfade mit beliebig nah an 1 liegender Dichte existieren

    Removal lemmas in sparse graphs

    Get PDF
    In this work we explain and prove the graph removal lemma, both in its dense and sparse cases, and show how these can be applied to finite groups to obtain arithmetic removal lemmas. We show how the concept of regularity plays a crucial role in the proof of the removal lemma. We explain the motivation behind the sparse case, and the importance of pseudorandom graphs in sparse versions of the removal lemma. Finally, we show how the removal lemma, both in its graph and arithmetic versions, can be used to prove Roth's theorem, that is, the existence of 3-term arithmetic progressions in any dense subset of the natural numbers

    Removal lemmas in sparse graphs

    No full text
    In this work we explain and prove the graph removal lemma, both in its dense and sparse cases, and show how these can be applied to finite groups to obtain arithmetic removal lemmas. We show how the concept of regularity plays a crucial role in the proof of the removal lemma. We explain the motivation behind the sparse case, and the importance of pseudorandom graphs in sparse versions of the removal lemma. Finally, we show how the removal lemma, both in its graph and arithmetic versions, can be used to prove Roth's theorem, that is, the existence of 3-term arithmetic progressions in any dense subset of the natural numbers

    Removal lemmas in sparse graphs

    No full text
    In this work we explain and prove the graph removal lemma, both in its dense and sparse cases, and show how these can be applied to finite groups to obtain arithmetic removal lemmas. We show how the concept of regularity plays a crucial role in the proof of the removal lemma. We explain the motivation behind the sparse case, and the importance of pseudorandom graphs in sparse versions of the removal lemma. Finally, we show how the removal lemma, both in its graph and arithmetic versions, can be used to prove Roth's theorem, that is, the existence of 3-term arithmetic progressions in any dense subset of the natural numbers
    corecore