19,099 research outputs found

    On vanishing sums of m\,m\,th roots of unity in finite fields

    Get PDF
    In an earlier work, the authors have determined all possible weights nn for which there exists a vanishing sum ζ1++ζn=0\zeta_1+\cdots +\zeta_n=0 of mmth roots of unity ζi\zeta_i in characteristic 0. In this paper, the same problem is studied in finite fields of characteristic pp. For given mm and pp, results are obtained on integers n0n_0 such that all integers nn0n\geq n_0 are in the ``weight set'' Wp(m)W_p(m). The main result (1.3)(1.3) in this paper guarantees, under suitable conditions, the existence of solutions of x1d++xnd=0x_1^d+\cdots+x_n^d=0 with all coordinates not equal to zero over a finite field

    Real time demonstration of high bitrate quantum random number generation with coherent laser light

    Full text link
    We present a random number generation scheme that uses broadband measurements of the vacuum field contained in the radio-frequency sidebands of a single-mode laser. Even though the measurements may contain technical noise, we show that suitable algorithms can transform the digitized photocurrents into a string of random numbers that can be made arbitrarily correlated with a subset of the quantum fluctuations (high quantum correlation regime) or arbitrarily immune to environmental fluctuations (high environmental immunity). We demonstrate up to 2 Gbps of real time random number generation that were verified using standard randomness tests

    Analytic treatment of CRIB Quantum Memories for Light using Two-level Atoms

    Full text link
    It has recently been discovered that the optical analogue of a gradient echo in an optically thick material could form the basis of a optical memory that is both completely efficient and noise free. Here we present analytical calculation showing this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particular we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even in the optically thin case.Comment: 10 page

    Configurable unitary transformations and linear logic gates using quantum memories

    Get PDF
    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favourable scaling with an increasing number of modes where N memories can be configured to implement an arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional CZ gate.Comment: 5 pages, 2 figure

    Analysis and control of bifurcation and chaos in averaged queue length in TCP/RED model

    Get PDF
    This paper studies the bifurcation and chaos phenomena in averaged queue length in a developed Transmission Control Protocol (TCP) model with Random Early Detection (RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network systems that lead to degradation of the network performance. The TCP/RED model used is a model validated previously. In our study, only the average queue size k q − is considered, and the results are based on analytical model rather than actual measurements. The instabilities in the model are studied numerically using the conventional nonlinear bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm is derived to prevent the observed bifurcation and chaos regardless of the selected parameters. Our modification is for the simple scenario of a single RED router carrying only TCP traffic. The algorithm neither compromises the throughput nor the average queuing delay of the system

    Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells.

    Get PDF
    Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli

    Storage and Manipulation of Light Using a Raman Gradient Echo Process

    Full text link
    The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the Λ\Lambda-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.Comment: 26 pages, 13 figure
    corecore