15,368 research outputs found
Recovery of continuous wave squeezing at low frequencies
We propose and demonstrate a system that produces squeezed vacuum using a
pair of optical parametric amplifiers. This scheme allows the production of
phase sidebands on the squeezed vacuum which facilitate phase locking in
downstream applications. We observe strong, stably locked, continuous wave
vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative
resonator configuration to overcome low frequency squeezing degradation caused
by the optical parametric amplifiers.Comment: 9 pages, 4 figure
Unification of bulk and interface electroresistive switching in oxide systems
We demonstrate that the physical mechanism behind electroresistive switching
in oxide Schottky systems is electroformation, as in insulating oxides.
Negative resistance shown by the hysteretic current-voltage curves proves that
impact ionization is at the origin of the switching. Analyses of the
capacitance-voltage and conductance-voltage curves through a simple model show
that an atomic rearrangement is involved in the process. Switching in these
systems is a bulk effect, not strictly confined at the interface but at the
charge space region.Comment: 4 pages, 3 figures, accepted in PR
Schubert Polynomials for the affine Grassmannian of the symplectic group
We study the Schubert calculus of the affine Grassmannian Gr of the
symplectic group. The integral homology and cohomology rings of Gr are
identified with dual Hopf algebras of symmetric functions, defined in terms of
Schur's P and Q-functions. An explicit combinatorial description is obtained
for the Schubert basis of the cohomology of Gr, and this is extended to a
definition of the affine type C Stanley symmetric functions. A homology Pieri
rule is also given for the product of a special Schubert class with an
arbitrary one.Comment: 45 page
Multi-domain active sound control and noise shielding
This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve âwantedâ sound within a domain while canceling âunwantedâ noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz.
© 2011 Acoustical Society of Americ
Higher-order non-symmetric counterterms in pure Yang-Mills theory
We analyze the restoration of the Slavnov-Taylor (ST) identities for pure
massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization
scheme with IR regulator. We obtain the most general form of the action-like
part of the symmetric regularized action, obeying the relevant ST identities
and all other relevant symmetries of the model, to all orders in the loop
expansion. We also give a cohomological characterization of the fulfillment of
BPHZL IR power-counting criterion, guaranteeing the existence of the limit
where the IR regulator goes to zero. The technique analyzed in this paper is
needed in the study of the restoration of the ST identities for those models,
like the MSSM, where massless particles are present and no invariant
regularization scheme is known to preserve the full set of ST identities of the
theory.Comment: Final version published in the journa
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos
A multi-target detection system XAX, comprising concentric 10 ton targets of
136Xe and 129/131Xe, together with a geometrically similar or larger target of
liquid Ar, is described. Each is configured as a two-phase
scintillation/ionization TPC detector, enhanced by a full 4pi array of
ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing
the conventional photomultipliers for detection of scintillation light. It is
shown that background levels in XAX can be reduced to the level required for
dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross
section, with single-event sensitivity below 10^-11 pb. The use of multiple
target elements allows for confirmation of the A^2 dependence of a coherent
cross section, and the different Xe isotopes provide information on the
spin-dependence of the dark matter interaction. The event rates observed by Xe
and Ar would modulate annually with opposite phases from each other for WIMP
mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of
background reduction allow neutrinoless double beta decay to be observed with
lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass
range 0.01-0.1 eV, the most likely range from observed neutrino mass
differences. The use of a 136Xe-depleted 129/131Xe target will also allow
measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure
Squeezing and entanglement delay using slow light
We examine the interaction of a weak probe with atoms in a lambda-level
configuration under the conditions of electromagnetically induced transparency
(EIT). In contrast to previous works on EIT, we calculate the output state of
the resultant slowly propagating light field while taking into account the
effects of ground state dephasing and atomic noise for a more realistic model.
In particular, we propose two experiments using slow light with a nonclassical
probe field and show that two properties of the probe, entanglement and
squeezing, characterizing the quantum state of the probe field, can be
well-preserved throughout the passage.Comment: 2 figures; v2: fixed some minor typographical errors in a couple of
equations and corrected author spelling in one reference. v3: Added three
authors; changed the entaglement definition to conform to a more accepted
standard (Duan's entanglement measure); altered the abstract slightly. v4:
fixed formatting of figure
A pseudo-spectral approach to inverse problems in interface dynamics
An improved scheme for computing coupling parameters of the
Kardar-Parisi-Zhang equation from a collection of successive interface
profiles, is presented. The approach hinges on a spectral representation of
this equation. An appropriate discretization based on a Fourier representation,
is discussed as a by-product of the above scheme. Our method is first tested on
profiles generated by a one-dimensional Kardar-Parisi-Zhang equation where it
is shown to reproduce the input parameters very accurately. When applied to
microscopic models of growth, it provides the values of the coupling parameters
associated with the corresponding continuum equations. This technique favorably
compares with previous methods based on real space schemes.Comment: 12 pages, 9 figures, revtex 3.0 with epsf style, to appear in Phys.
Rev.
Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor.
Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a 'wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model
- âŠ