142 research outputs found

    MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model.

    Get PDF
    The complement and coagulation systems closely interact with each other. These interactions are believed to contribute to the proinflammatory and prothrombotic environment involved in the development of thrombotic complications in many diseases. Complement MASP-1 (mannan-binding lectin-associated serine protease-1) activates coagulation factors and promotes clot formation. However, this was mainly shown in purified or plasma-based static systems. Here we describe the role of MASP-1 and complement activation in fibrin clot formation in a microvascular, whole blood flow model. This microfluidic system simulates blood flow through microvessels at physiological flow and shear rates and represents the closest model system to human physiology so far. It features parallel microchannels cultured with endothelial cells in a transparent microfluidic chip allowing real-time evaluation of clot formation by confocal microscopy. To test their effects on clot formation, we added the following activators or inhibitors (individually or in combination) to whole blood and performed perfusion experiments: rMASP-1cf (recombinant active form of MASP-1), complement activator zymosan, selective MASP-1 inhibitor SGMI-1 (based on the Schistocerca gregaria protease inhibitor scaffold), classical pathway inhibitor rSALO (recombinant salivary anti-complement from Lutzomyia longipalpis). Addition of rMASP-1cf resulted in accelerated fibrin clot formation while addition of SGMI-1 delayed it. Complement activation by zymosan led to increased clot formation and this effect was partially reversed by addition of rSALO and almost abolished in combination with SGMI-1. We show for the first time a strong influence of MASP-1, complement activation and pathway-specific inhibition on coagulation in a microvascular flow system that is closest to human physiology, further underpinning the in vivo relevance of coagulation and complement interactions

    Mobile Phone Based Clinical Microscopy for Global Health Applications

    Get PDF
    Light microscopy provides a simple, cost-effective, and vital method for the diagnosis and screening of hematologic and infectious diseases. In many regions of the world, however, the required equipment is either unavailable or insufficiently portable, and operators may not possess adequate training to make full use of the images obtained. Counterintuitively, these same regions are often well served by mobile phone networks, suggesting the possibility of leveraging portable, camera-enabled mobile phones for diagnostic imaging and telemedicine. Toward this end we have built a mobile phone-mounted light microscope and demonstrated its potential for clinical use by imaging P. falciparum-infected and sickle red blood cells in brightfield and M. tuberculosis-infected sputum samples in fluorescence with LED excitation. In all cases resolution exceeded that necessary to detect blood cell and microorganism morphology, and with the tuberculosis samples we took further advantage of the digitized images to demonstrate automated bacillus counting via image analysis software. We expect such a telemedicine system for global healthcare via mobile phone – offering inexpensive brightfield and fluorescence microscopy integrated with automated image analysis – to provide an important tool for disease diagnosis and screening, particularly in the developing world and rural areas where laboratory facilities are scarce but mobile phone infrastructure is extensive

    Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions

    Get PDF
    The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications

    Effect of swab pooling on the Accula point-of-care RT-PCR for SARS-CoV-2 detection

    Get PDF
    IntroductionSwab pooling may allow for more efficient use of point-of-care assays for SARS-CoV-2 detection in settings where widespread testing is warranted, but the effects of pooling on assay performance are not well described.MethodsWe tested the Thermo-Fisher Accula rapid point-of-care RT-PCR platform with contrived pooled nasal swab specimens.ResultsWe observed a higher limit of detection of 3,750 copies/swab in pooled specimens compared to 2,250 copies/swab in individual specimens. Assay performance appeared worse in a specimen with visible nasal mucous and debris, although performance was improved when using a standard laboratory mechanical pipette compared to the transfer pipette included in the assay kit.ConclusionClinicians and public health officials overseeing mass testing efforts must understand limitations and benefits of swab or sample pooling, including reduced assay performance from pooled specimens. We conclude that the Accula RT-PCR platform remains an attractive candidate assay for pooling strategies owing to the superior analytical sensitivity compared to most home use and point-of-care tests despite the inhibitory effects of pooled specimens we characterized

    Feature tracking microfluidic analysis reveals differential roles of viscosity and friction in sickle cell blood

    Get PDF
    Characterization of blood flow rheology in hematological disorders is critical for understanding disease pathophysiology. Existing methods to measure blood rheological parameters are limited in their physiological relevance, and there is a need for new tools that focus on the microcirculation and extract properties at finer resolution than overall flow resistance. Herein, we present a method that combines microfluidic systems and powerful object-tracking computational technologies with mathematical modeling to separate the red blood cell flow profile into a bulk component and a wall component. We use this framework to evaluate differential contributions of effective viscosity and wall friction to the overall resistance in blood from patients with Sickle Cell Disease (SCD) under a range of oxygen tensions. Our results demonstrate that blood from patients with SCD exhibits elevated frictional and viscous resistances at all physiologic oxygen tensions. Additionally, the viscous resistance increases more rapidly than the frictional resistance as oxygen tension decreases, which may confound analyses that extract only flow velocities or overall flow resistances. Furthermore, we evaluate the impact of transfusion treatments on the components of the resistance, revealing patient variability in blood properties that may improve our understanding of the heterogeneity of clinical responses to such treatments. Overall, our system provides a new method to analyze patient-specific blood properties and can be applied to a wide range of hematological and vascular disorders

    AnemoCheck-LRS: An optimized, color-based point-of-care test to identify severe anemia in limited-resource settings

    Get PDF
    BACKGROUND: Severe anemia is common and frequently fatal for hospitalized patients in limited-resource settings. Lack of access to low-cost, accurate, and rapid diagnosis of anemia impedes the delivery of life-saving care and appropriate use of the limited blood supply. The WHO Haemoglobin Colour Scale (HCS) is a simple low-cost test but frequently inaccurate. AnemoCheck-LRS (limited-resource settings) is a rapid, inexpensive, color-based point-of-care (POC) test optimized to diagnose severe anemia. METHODS: Deidentified whole blood samples were diluted with plasma to create variable hemoglobin (Hb) concentrations, with most in the severe (≤ 7 g/dL) or profound (≤ 5 g/dL) anemia range. Each sample was tested with AnemoCheck-LRS and WHO HCS independently by three readers and compared to Hb measured by an electronic POC test (HemoCue 201 RESULTS: For 570 evaluations within the limits of detection of AnemoCheck-LRS (Hb ≤ 8 g/dL), the average difference between AnemoCheck-LRS and measured Hb was 0.5 ± 0.4 g/dL. In contrast, the WHO HCS overestimated Hb with an absolute difference of 4.9 ± 1.3 g/dL for samples within its detection range (Hb 4-14 g/dL, n = 405). AnemoCheck-LRS was much more sensitive (92%) for the diagnosis of profound anemia than WHO HCS (22%). CONCLUSIONS: AnemoCheck-LRS is a rapid, inexpensive, and accurate POC test for anemia. AnemoCheck-LRS is more accurate than WHO HCS for detection of low Hb levels, severe anemia that may require blood transfusion. AnemoCheck-LRS should be tested prospectively in limited-resource settings where severe anemia is common, to determine its utility as a screening tool to identify patients who may require transfusion

    Complement lectin pathway components MBL and MASP-1 promote haemostasis upon vessel injury in a microvascular bleeding model.

    Get PDF
    Background Complement lectin pathway components, in particular mannan-binding lectin (MBL) and MBL-associated serine proteases (MASPs) have been shown to interact with coagulation factors and contribute to clot formation. Here we investigated the role of MBL and MASP-1 in the haemostatic response following mechanical vessel injury in a human microfluidic bleeding model. Methods We studied haemostasis in a microvascular bleeding model in the presence of human endothelial cells and human whole blood under flow conditions. We monitored incorporation of proteins into the clot with fluorescently labelled antibodies and studied their effects on clot formation, platelet activation, and bleeding time with specific inhibitors. Platelet activation was also studied by flow cytometry. Results Upon vessel injury, MBL accumulated at the injury site in a well-defined wall-like structure. MBL showed partial colocalisation with fibrin, and strong colocalisation with von Willebrand factor and (activated) platelets. Flow cytometry ruled out direct binding of MBL to platelets, but confirmed a PAR4- and thrombin-dependent platelet-activating function of MASP-1. Inhibiting MBL during haemostasis reduced platelet activation, while inhibiting MASP-1 reduced platelet activation, fibrin deposition and prolonged bleeding time. Conclusion We show in a microvascular human bleeding model that MBL and MASP-1 have important roles in the haemostatic response triggered by mechanical vessel injury: MBL recognises the injury site, while MASP-1 increases fibrin formation, platelet activation and shortens bleeding time. While the complement lectin pathway may be harmful in the context of pathological thrombosis, it appears to be beneficial during the physiological coagulation response by supporting the crucial haemostatic system

    Microenvironmental Geometry Guides Platelet Adhesion and Spreading: A Quantitative Analysis at the Single Cell Level

    Get PDF
    To activate clot formation and maintain hemostasis, platelets adhere and spread onto sites of vascular injury. Although this process is well-characterized biochemically, how the physical and spatial cues in the microenvironment affect platelet adhesion and spreading remain unclear. In this study, we applied deep UV photolithography and protein micro/nanostamping to quantitatively investigate and characterize the spatial guidance of platelet spreading at the single cell level and with nanoscale resolution. Platelets adhered to and spread only onto micropatterned collagen or fibrinogen surfaces and followed the microenvironmental geometry with high fidelity and with single micron precision. Using micropatterned lines of different widths, we determined that platelets are able to conform to micropatterned stripes as thin as 0.6 µm and adopt a maximum aspect ratio of 19 on those protein patterns. Interestingly, platelets were also able to span and spread over non-patterned regions of up to 5 µm, a length consistent with that of maximally extended filopodia. This process appears to be mediated by platelet filopodia that are sensitive to spatial cues. Finally, we observed that microenvironmental geometry directly affects platelet biology, such as the spatial organization and distribution of the platelet actin cytoskeleton. Our data demonstrate that platelet spreading is a finely-tuned and spatially-guided process in which spatial cues directly influence the biological aspects of how clot formation is regulated
    • …
    corecore