21 research outputs found

    A Case of Pituitary Apoplexy Complicating the Management of Sepsis

    Get PDF
    Pituitary apoplexy is a condition of sudden hemorrhage into the pituitary gland, usually at the site of a pituitary adenoma, occurring in 8% of pituitary macroadenomas. The clinical presentation of pituitary apoplexy varies based upon the timing and mechanism of pituitary mass expansion towards the optic nerve or hypothalamus, as well as the hormonal function of the neoplasm and remaining pituitary gland tissue. Nearly all patients present with headache (97%), and fewer patients present with visual field impairment (71%). Pituitary apoplexy acutely disrupts the hypothalamic-pituitary-adrenal (HPA) axis, and may lead to relative adrenal insufficiency in septic shock, with a high mortality if not recognized and treated

    Cognitive processing speed in older adults: relationship with white matter integrity.

    Get PDF
    Cognitive processing slows with age. We sought to determine the importance of white matter integrity, assessed by diffusion tensor imaging (DTI), at influencing cognitive processing speed among normal older adults, assessed using a novel battery of computerized, non-verbal, choice reaction time tasks. We studied 131 cognitively normal adults aged 55-87 using a cross-sectional design. Each participant underwent our test battery, as well as MRI with DTI. We carried out cross-subject comparisons using tract-based spatial statistics. As expected, reaction time slowed significantly with age. In diffuse areas of frontal and parietal white matter, especially the anterior corpus callosum, fractional anisotropy values correlated negatively with reaction time. The genu and body of the corpus callosum, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus were among the areas most involved. This relationship was not explained by gray or white matter atrophy or by white matter lesion volume. In a statistical mediation analysis, loss of white matter integrity mediated the relationship between age and cognitive processing speed

    The Frontal-Anatomic Specificity of Design Fluency Repetitions and Their Diagnostic Relevance for Behavioral Variant Frontotemporal Dementia

    No full text
    On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer’s disease, semantic dementia, progressive supranuclear palsy or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD

    Processing speed correlates with white matter integrity.

    No full text
    <p>Voxel-wise regressions compared the composite scaled reaction time with various parameters of white matter integrity: fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (DR). In red are voxels that correlated with scaled reaction time (p<0.01 after family-wise error correction); correlations were negative for FA and positive for MD and DR. These significant areas are thickened for ease of illustration. The TBSS white matter skeleton used for voxel-wise comparisons is illustrated in blue on axial images. Regression models included age, gender, education, and TIV as nuisance variables. Axial diffusivity was also tested, but was not illustrated because there was no area of significance (p>0.05). Axial slices are illustrated in anatomical (left-is-left) orientation.</p

    Neural substrates of socioemotional self‐awareness in neurodegenerative disease

    No full text
    BACKGROUND: Neuroimaging studies examining neural substrates of impaired self-awareness in patients with neurodegenerative diseases have shown divergent results depending on the modality (cognitive, emotional, behavioral) of awareness. Evidence is accumulating to suggest that self-awareness arises from a combination of modality-specific and large-scale supramodal neural networks. METHODS: We investigated the structural substrates of patients' tendency to overestimate or underestimate their own capacity to demonstrate empathic concern for others. Subjects' level of empathic concern was measured using the Interpersonal Reactivity Index, and subject-informant discrepancy scores were used to predict regional atrophy pattern, using voxel-based morphometry analysis. Of the 102 subjects, 83 were patients with neurodegenerative diseases such as behavioral variant frontotemporal dementia (bvFTD) or semantic variant primary progressive aphasia (svPPA); the other 19 were healthy older adults. RESULTS: bvFTD and svPPA patients typically overestimated their level of empathic concern compared to controls, and overestimating one's empathic concern predicted damage to predominantly right-hemispheric anterior infero-lateral temporal regions, whereas underestimating one's empathic concern showed no neuroanatomical basis. CONCLUSIONS: These findings suggest that overestimation and underestimation of one's capacity for empathic concern cannot be interpreted as varying degrees of the same phenomenon, but may arise from different pathophysiological processes. Damage to anterior infero-lateral temporal regions has been associated with semantic self-knowledge, emotion processing, and social perspective taking; neuropsychological functions partly associated with empathic concern itself. These findings support the hypothesis that—at least in the socioemotional domain—neural substrates of self-awareness are partly modality-specific

    Neural substrates of socioemotional self-awareness in neurodegenerative disease.

    No full text
    BackgroundNeuroimaging studies examining neural substrates of impaired self-awareness in patients with neurodegenerative diseases have shown divergent results depending on the modality (cognitive, emotional, behavioral) of awareness. Evidence is accumulating to suggest that self-awareness arises from a combination of modality-specific and large-scale supramodal neural networks.MethodsWe investigated the structural substrates of patients' tendency to overestimate or underestimate their own capacity to demonstrate empathic concern for others. Subjects' level of empathic concern was measured using the Interpersonal Reactivity Index, and subject-informant discrepancy scores were used to predict regional atrophy pattern, using voxel-based morphometry analysis. Of the 102 subjects, 83 were patients with neurodegenerative diseases such as behavioral variant frontotemporal dementia (bvFTD) or semantic variant primary progressive aphasia (svPPA); the other 19 were healthy older adults.ResultsbvFTD and svPPA patients typically overestimated their level of empathic concern compared to controls, and overestimating one's empathic concern predicted damage to predominantly right-hemispheric anterior infero-lateral temporal regions, whereas underestimating one's empathic concern showed no neuroanatomical basis.ConclusionsThese findings suggest that overestimation and underestimation of one's capacity for empathic concern cannot be interpreted as varying degrees of the same phenomenon, but may arise from different pathophysiological processes. Damage to anterior infero-lateral temporal regions has been associated with semantic self-knowledge, emotion processing, and social perspective taking; neuropsychological functions partly associated with empathic concern itself. These findings support the hypothesis that-at least in the socioemotional domain-neural substrates of self-awareness are partly modality-specific

    Subjects.

    No full text
    *<p>See exclusion criteria in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050425#s2" target="_blank">Subjects and Methods</a>.</p>**<p>In these subjects, MRI revealed an unexpected brain lesion.</p>***<p>Other includes left-handed (11), ambidextrous (3), and not known (4).</p><p>MMSE, Mini Mental State Exam.</p
    corecore