36 research outputs found

    Skeletal muscle AMPK is essential for the maintenance of FNDC5 expression

    Get PDF
    Fibronectin type III domain‐containing protein 5 (FNDC5) expression is controlled by the transcriptional co‐activator, peroxisome proliferator‐activated receptor gamma, coactivator 1 alpha (PGC1α). FNDC5 expression has been shown to be increased in muscle in response to endurance exercise in some but not all studies, therefore a greater understanding of the mechanisms controlling this process are needed. The AMP‐activated protein kinase (AMPK) is activated by exercise in an intensity dependent manner and is an important regulator of PGC1α activity; therefore, we explored the role of AMPK in the regulation of FNDC5 using AMPK ÎČ1ÎČ2 double muscle‐null mice (AMPK DMKO), which lack skeletal muscle AMPK activity. We found that FNDC5 expression is dramatically reduced in resting muscles of AMPK DMKO mice compared to wild‐type littermates. In wild‐type mice, activating phosphorylation of AMPK was elevated immediately post contraction and was abolished in muscle from AMPK DMKO mice. In contrast, PGC1α was increased in both wild‐type and AMPK DMKO mice 3 h post contraction but FNDC5 protein expression was not altered. Lastly, acute or chronic activation of AMPK with the pharmacological AMPK activator AICAR did not increase PGC1α or FNDC5 expression in muscle. These data indicate that skeletal muscle AMPK is required for the maintenance of basal FNDC5 expression

    Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial spot of tomato and pepper is caused by four <it>Xanthomonas </it>species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, <it>Xanthomonas euvesicatoria </it>(<it>Xcv</it>) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.</p> <p>Results</p> <p>We sequenced the genomes of <it>X. vesicatoria </it>(<it>Xv</it>) strain 1111 (ATCC 35937), <it>X. perforans </it>(<it>Xp</it>) strain 91-118 and <it>X. gardneri </it>(<it>Xg</it>) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced <it>Xcv </it>strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from <it>Xg </it>strain 101 and <it>Xv </it>strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in <it>Xcv</it>. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.</p> <p>Conclusions</p> <p>Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.</p

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations

    Over-expressing mitofusin-2 in healthy mature mammalian skeletal muscle does not alter mitochondrial bioenergetics.

    Get PDF
    The role of mitofusin-2 (MFN-2) in regulating mitochondrial dynamics has been well-characterized in lower order eukaryotic cell lines through the complete ablation of MFN-2 protein. However, to support the contractile function of mature skeletal muscle, the subcellular architecture and constituent proteins of this tissue differ substantially from simpler cellular organisms. Such differences may also impact the role of MFN-2 in mature mammalian muscle, and it is unclear if minor fluctuations in MFN-2, as observed in response to physiological perturbations, has a functional consequence. Therefore, we have transiently transfected MFN-2 cDNA into rat tibialis anterior muscle to determine the effect of physiolgically relevant increases in MFN-2 protein on mitochondrial bioenergetics. Permeabilized muscle fibres generated from muscle following MFN-2-transfection were used for functional assessments of mitochondrial bioenergetics. In addition, we have further established a novel method for selecting fibre bundles that are positively transfected, and using this approach transient transfection increased MFN-2 protein ∌2.3 fold in selected muscle fibres. However, this did not alter maximal rates of oxygen consumption or the sensitivity for ADP-stimulated respiration. In addition, MFN-2 over-expression did not alter rates of H(2)O(2) emission. Altogether, and contrary to evidence from lower order cell lines, our results indicate that over-expressing MFN-2 in healthy muscle does not influence mitochondrial bioenergetics in mature mammalian skeletal muscle

    Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging

    Get PDF
    Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle-to-skin signaling occurs. We demonstrate that endurance exercise attenuates age-associated changes to skin in humans and mice and identify exercise-induced IL-15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL-15 expression in part through skeletal muscle AMP-activated protein kinase ( AMPK) , a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL-15 therapy mimics some of the anti-aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low-dose IL-15 therapy may prove to be a beneficial strategy to attenuate skin aging

    Mitochondrial hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) emission (B) in permeabilized fibre bundles selected with MFN-2 over-expression (A).

    No full text
    <p>A total of 18 fibre bundels were analyzed following MFN-2 transient transfection (T), and 4 of these displayed higher MFN-2 protein relative to all fibres from the contralateral control muscle (C). Mitochondrial hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) emission was determined fluorometrically (Lumina, Thermo Scientific) in a constantly stirring cuvette at 37°C in a standard reaction media supplemented with 5 ”M Amplex red, 0.5 U/ml horseradish peroxidase, 10 mM succinate, 10 ”g/ml oligomyocin and 40 U/ml Cu,Zn-SOD and 25 ”M blebbistatin. Results represent means ± S.E.M.; n = 6 independent experiments.</p

    The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats

    Get PDF
    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish–borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors—such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases—are present. Proteomes of L. hongkongensis HLHK9 cultured at 37°C (human body temperature) and 20°C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)—NAGK-20 and NAGK-37—in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20°C, whereas NAGK-37 showed higher expression at 37°C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other bacteria. Genome and proteome analysis of L. hongkongensis revealed novel mechanisms for adaptations to survival at different temperatures and habitats

    Respiration in permeabilized fibre bundles selected with MFN-2 over-expression.

    No full text
    <p>The respiration protocol consisted of state IV respiration in the presence of 5 mM pyruvate+2 mM malate, the subsequent titration of ADP to maximal state III respiration (4 mM), and then the sequential addition of 10 mM glutamate and 10 mM succinate. Maximal uncoupled respiration was determined by titrating FCCP. Results represent means ± S.E.M.; n = 6 independent experiments.</p
    corecore