173 research outputs found

    Organic composition and environmental conditions in mangrove sediments : a key for reconstructing the evolution of theFrench Guiana coast.

    No full text
    Le littoral guyanais prĂ©sente une dynamique sĂ©dimentaire remarquable rĂ©sultant du systĂšme dispersif amazonien. Une mangrove, essentiellement composĂ©e d'Avicennia germinans, se dĂ©veloppe sur les bancs de vase. Ceux-ci migrent rapidement vers le NO et limitent la durĂ©e de vie de la mangrove. Les lambeaux de forĂȘt rĂ©siduels ont pu ĂȘtre datĂ©s par analyse d'images Spot successives (VĂ©ga, 2000). Les mesures des paramĂštres physico-chimiques, les donnĂ©es Rock-Eval ainsi que des observations et comptages pĂ©trographiques ont permis d'identifier deux systĂšmes de fonctionnement de la mangrove : les forĂȘts jeunes (< 9ans), caractĂ©risĂ©es par un export tidal important, et la forĂȘt sĂ©nescente oĂč l'exportation tidale est limitĂ©e. La composition organique du sĂ©diment des mangroves jeunes provient principalement des mattes microbiennes et en quantitĂ© moindre du systĂšme racinaire de la mangrove. Les mĂ©canismes de dĂ©gradation sont des processus suboxiques rĂ©sultant de l'activitĂ© du systĂšme racinaire des Avicennia. La composition organique du sĂ©diment de la forĂȘt sĂ©nescente provient principalement de dĂ©bris de vĂ©gĂ©taux supĂ©rieurs, les processus de dĂ©gradations sont de type anaĂ©robie

    The composition of sedimentary organic matter in relation to the dynamic features of the mangrove-fringed coast in French Guiana.

    No full text
    The sedimentary organic matter content of a series of 2-m-deep cores was examined in relation to the evolution of mangrove forest, on the basis of geochemical analyses and optical observations. Avicennia-dominated forest deposits, developing along the highly dynamic coastline of French Guiana, were collected in five stations based on stage of forest evolution. The sedimentary organic matter in the upper sediment of the youngest mangrove swamp is mainly derived from algal mats with low carbon:nitrogen ratios (C:N ratio, from 6 to 8) and typical greyish amorphous organic flakes as observed in optical studies. Indeed, rare young Avicennia trees are present, and effectively, geochemical parameters do not give evidence of a litter made up of higher plant debris, these rare debris being probably exported by the tides. A slight increase with depth in the first decimetres of both total organic carbon (TOC) content and C:N ratio results from the development of the radial cable root-system of the pioneer Avicennia germinans. Early diagenetic conditions of this young forest are rather controlled by dominant suboxic processes, as suggested by high Eh values (range, 200–400 mV) and local anoxic processes (occurrence of pyrite) in micro-environments: this is mainly due to the oxygen available by roots and crab bioturbation. The organic content of the senescent mangrove sediment is mainly derived from higher plant debris in the uppermost 30 cm, as indicated by relatively high C:N ratios and the predominance of ligno-cellulosic debris. The strong decrease in hydrogen index values results from the degradation of the higher plant debris, losing hydrogen bounds through decay processes. Moderately acidic pH values, low Ehs and the presence of pyrite framboids point towards the reducing decay processes in surficial layers of the senescent mangrove mediated by sulphate-reducing bacteria. Whatever the stage of evolution of the forest, the geochemical characteristics of the sediment below 30 cm are those of the shoreface one, with opaque refractory debris derived from the Amazon river detritus discharge. The sediment collected from dead mangrove forests, subsequently recolonized by pioneer mangroves, contains organic markers, which predate recolonization, recording previous phases of erosion and accretion

    Pore-water chemistry in mangrove sediments: relationship with species composition and developmental stages. (French Guiana).

    No full text
    Spatial and seasonal variability of sedimentary salinity, pH, redox potential and solid phase sulphide concentration were investigated in a range of mangrove communities along the coast of French Guiana. Seasonal depth distributions of these parameters and organic content were compared within Avicennia, Rhizophora and mixed mangrove stands at different stages of plant development. Mangrove communities and variable surface water inputs strongly impact sediment and ground water properties. In the upper sediment, changes in salinity are mainly controlled by seasonal conditions, transpiration and proximity of fresh water influx, whereas we suggest that constant basal salinity results from an accumulation of salt that has migrated as a result of density driven convection processes. There are no clear differences between the depth distributions of salinity obtained beneath Avicennia germinans and Rhizophora mangle stands, implying that plant zonations are not primarily controlled by soil salinity in this environment. Nevertheless, R. mangle grows in places subjected to the greatest variability in freshwater influxes, suggesting that Rhizophora might require or withstand occasional inundation by fresh water. Beneath Rhizophora stands, sediment properties reflect anaerobic and sulphidic conditions close to the sediment surface. In contrast, beneath Avicennia stands, sediment geochemistry mostly depends on the stages in forest development, on contents in sedimentary organic matter and on seasonal changes. In the early stage of Avicennia settlement, the sediment at the level of radial, pneumatophore-bearing cable roots, displays permanent suboxic conditions with Eh values reaching 400 mV. These high Ehs are interpreted as an effect of the oxidation produced by the cable root system. The development of mature Avicennia stands results in accumulation of sedimentary organic matter and promotes low Ehs and the reduction of pore-water sulphate. Near cable root level, the oxidation process observed in pioneer mangroves results in a reoxidation of solid sulphides produced previously. During dry conditions, the desiccation of the upper sediment adds its oxidation effects to those of root activity. As a result, suboxic processes dominate in the upper, 20-cm-thick layer; organic matter decomposition and sulphur oxidation strongly acidify the sediment. Below 20 cm, the sediment is anaerobic and sulphidic. Hence, sulphide concentrations depend on the edaphic conditions controlling decay processes and appear to be a consequence rather than a cause of the observed zonation of vegetal species. The small size of A. germinans propagules might have a significant influence on the extensive development of this plant community along the highly dynamic coastline of the Guianas. This study demonstrates that the different properties of pore-water were intimately linked and that the explanation of the evolution of this forest reflects a combination of multiple parameters. Moreover, it appeared that the organic content played a key role along with the species composition and the seasonal variations (waterlogging, desiccation)

    Dynamique de la matiÚre organique lors de l'évolution d'une mangrove à palétuviers gris (A. germinans), Guyane française. Un exemple de processus suboxiques en milieu hydromorphe.

    No full text
    La mangrove est un systĂšme ouvert Ă©cotone couvrant 22 millions d'hectares, sur prĂšs de 75% des littoraux tropicaux et subtropicaux. Il s'agit de forĂȘt de palĂ©tuviers caractĂ©risĂ©es par une forte productivitĂ©, dĂ©veloppant des systĂšmes d'adaptation remarquables leur permettant de pallier aux contraintes d'un milieu trĂšs sĂ©lectif (sursalure, anoxie, houle...). Pour exemple, les Rhizophoraceae s'ancrent dans le substrat grĂące Ă  des racines Ă©chasses tandis que les Avicenniaceae utilisent des pneumatophores pour la respiration; leur mode de reproduction de type vivipare leur permet de coloniser des surfaces de vase inondĂ©es par les marĂ©es. Les mangroves ont un rĂŽle prĂ©pondĂ©rant dans le cycle des nutrients en milieu cĂŽtier, et permettent la stabilitĂ© du trait de cĂŽte, limitant l'action Ă©rosive des vagues. Ces derniĂšres dĂ©cennies, la surface colonisĂ©e par les mangroves a nettement diminuĂ© du fait de la pression anthropique : exploitation du bois, riziculture ou bien encore utilisation de la mangrove comme dĂ©charge

    Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana.

    No full text
    The accumulation of nine heavy metals in fine-grained sediments from the mangrove fringed coast of French Guiana is evaluated. The dynamic features of the South American tropical coastline, from the Amazon to the Orinoco Rivers, result in mangrove sediments being alternately submitted to phases of erosion and net sedimentation a few tens of years long. This process influences the distribution of the heavy metals associated with these frequently re-mobilized deposits. Sedimentary cores and mangrove plant samples were collected, at different seasons, in various swamps characterized by different properties (content of sedimentary organic matter, distance from sea water and fresh water). The ranges of measured concentrations expressed in mu mol g(-1) were the following: Cu (0.06 to 0.61), Co (0.12 to 0.68), Pb (0.08 to 0.18), Ni (0.32 to 0.76), Cr (0.61 to 1.40), Zn (1.25 to 5.94), Mn (4.36 to 45.4) and Fe (441 to 1128). No differences were found between sediments from mangroves developing upstream and downstream of urban areas, i.e. Cayenne and Kourou. This suggests that the content of mangrove sediments in heavy metals along the coastline of French Guiana is essentially the result of the continuous alternation of accumulation and transport phases occurring upstream after departing from the Amazon watershed. The sources of this heavy metals content are thus difficult to identify. However it is well known that the alluvium produced by the natural erosion of the Amazonian soils is naturally enriched in mercury. Also, the run-off from gold mining activities is known to contribute to mercury pollution. Ranges in total Hg were between 0.15 and 2.57 nmol g(-1), with mean values close to 0.41 nmol g(-1), and were clearly correlated with total organic carbon except for some outstanding high values, which may be a result of rapid geochemical changes. Heavy metal concentrations showed variations with depth. The redox conditions and the decay processes affecting the organic matter control the cycling of iron and manganese, which in turn control the concentrations and associations of heavy metals. These preliminary results suggest that the variations in heavy metal content with depth or between mangrove areas result largely from diagenetic processes rather than changes in metal input resulting from local human activities

    Recent sedimentation of organic matter along the SE Atlantic Margin : A key for understanding deep offshore petroleum source rocks.

    No full text
    Classical views for the deposition of organic-rich sediments in deep-sea environments invoke two principal types of oceanographic and sedimentologic settings. The first is confined basins in which stratified oxygen depleted waters lead to anoxic preservation of organic matter in the water column and in underlying sediments (Demaison and Moore, 1980). The second is an open ocean setting where the episodic mass transfers due to slope sediment instability lead to the rapid burial of outer-shelf and upper slope-derived organic matter and its consequent preservation due to limited oxic or anoxic degradation (Stow, 1987). Other studies have shown, however, that organic matter in modern deep-sea sediments may occur in high amounts where oxygen is not significantly depleted (Pedersen and Calvert, 1990). Recent studies have demonstrated that highly biological productive areas, such as the upwelling zones associated to the Benguela Current in S-E Atlantic, may deliver sufficient quantity of organic material to (1) outbalance the degradative capacity of the water column and (2) sustain the formation of organic-rich sediments even in deep and oxygenated conditions (Bertrand et al., 2003). It appears that the S-E Atlantic margins provide a good example for revisiting the sedimentology of organic matter in deep water environments in the frame of the GDR Marges Continentales. This may have important implications for a better understanding of the distribution of ancient source rocks in deep offshore petroleum systems (Huc et al., 2001; Bertrand et al., 2003)

    Insights into metazoan evolution from <i>Alvinella pompejana</i> cDNAs

    Get PDF
    BackgroundAlvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures.ResultsWe have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity.ConclusionsOur study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates

    Sound can improve visual search in developmental dyslexia

    Get PDF
    We examined whether developmental dyslexic adults suffer from sluggish attentional shifting (SAS; Hari and Renvall in Trends Cogn Sci 5:525–532, 2001) by measuring their shifting of attention in a visual search task with dynamic cluttered displays (Van der Burg et al. in J Exp Psychol Human 34:1053–1065, 2008). Dyslexics were generally slower than normal readers in searching a horizontal or vertical target among oblique distracters. However, the addition of a click sound presented in synchrony with a color change of the target drastically improved their performance up to the level of the normal readers. These results are in line with the idea that developmental dyslexics have specific problems in disengaging attention from the current fixation, and that the phasic alerting by a sound can compensate for this deficit

    Encoding order and developmental dyslexia:a family of skills predicting different orthographic components

    Get PDF
    We investigated order encoding in developmental dyslexia using a task that presented nonalphanumeric visual characters either simultaneously or sequentially—to tap spatial and temporal order encoding, respectively—and asked participants to reproduce their order. Dyslexic participants performed poorly in the sequential condition, but normally in the simultaneous condition, except for positions most susceptible to interference. These results are novel in demonstrating a selective difficulty with temporal order encoding in a dyslexic group. We also tested the associations between our order reconstruction tasks and: (a) lexical learning and phonological tasks; and (b) different reading and spelling tasks. Correlations were extensive when the whole group of participants was considered together. When dyslexics and controls were considered separately, different patterns of association emerged between orthographic tasks on the one side and tasks tapping order encoding, phonological processing, and written learning on the other. These results indicate that different skills support different aspects of orthographic processing and are impaired to different degrees in individuals with dyslexia. Therefore, developmental dyslexia is not caused by a single impairment, but by a family of deficits loosely related to difficulties with order. Understanding the contribution of these different deficits will be crucial to deepen our understanding of this disorder
    • 

    corecore