560 research outputs found

    Field-dependent heat transport in the Kondo insulator SmB6 : phonons scattered by magnetic impurities

    Full text link
    The thermal conductivity Îș\kappa of the Kondo insulator SmB6_6 was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term Îș0/T\kappa_0/T at T→0T \to 0 is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fermionic heat carriers. In contrast to some prior data, we observe a large enhancement of Îș(T)\kappa(T) with increasing field. The effect of field is anisotropic, depending on the relative orientation of field and heat current (parallel or perpendicular), and with respect to the cubic crystal structure. We interpret our data in terms of heat transport predominantly by phonons, which are scattered by magnetic impurities.Comment: publish versio

    Functional diversity metrics using kernel density n-dimensional hypervolumes

    Get PDF
    The use ofn-dimensional hypervolumes in trait-based ecology is rapidly increasing. By representing the functional space of a species or community as a Hutchinsonian niche, the abstract Euclidean space defined by a set of independent axes corresponding to individuals or species traits, these multidimensional techniques show great potential for the advance of functional ecology theory. In the panorama of existing methods for delineating multidimensional spaces, therpackagehypervolume(Global Ecology and Biogeography, 23, 2014, 595-609) is currently the most used. However, functions for calculating the standard set of functional diversity (FD) indices-richness, divergence and regularity-have not been developed within thehypervolumeframework yet. This gap is delaying its full exploitation in functional ecology, meanwhile preventing the possibility to compare its performance with that of other methods. We develop a set of functions to calculate FD indices based onn-dimensional hypervolumes, including alpha (richness), beta (and respective components), dispersion, evenness, contribution and originality. Altogether, these indices provide a coherent framework to explore the primary mathematical components of FD within a multidimensional setting. These new functions can work either with hypervolume objects or with raw data (species presence or abundance and their traits) as input data, and are versatile in terms of input parameters and options. These functions are implemented withinbat(Biodiversity Assessment Tools), anrpackage for biodiversity assessments. As a coherent corpus of functional indices based on a common algorithm, it opens the possibility to fully explore the strengths of the Hutchinsonian niche concept in community ecology research.Peer reviewe

    Pseudogap phase of cuprate superconductors confined by Fermi surface topology

    Full text link
    The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping p∗p^* that is material-dependent. What determines p∗p^* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping pFSp_{FS} at which the large Fermi surface goes from hole-like to electron-like, so that p∗p^* ≀\leq pFSp_{FS}. We derive this result from high-magnetic-field transport measurements in La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 under pressure, which reveal a large and unexpected shift of p∗p^* with pressure, driven by a corresponding shift in pFSp_{FS}. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that p∗p^* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.Comment: 15 pages, 5 figures, 7 supplemental figure

    More flexible brain activation underlies cognitive reserve in older adults

    Get PDF
    Abstract The goal of this study was to identify the brain mechanisms underlying cognitive reserve using a parametric n-back working memory (WM) task in a sample of healthy older adults. We first identified the WM-related activations associated with years of education and then tested whether these activations mitigated the detrimental impact of age on cognition. Thirty-nine older adults received a magnetic resonance imaging examination while completing an n-back task with different levels of WM load (0-, 1- vs. 2-back). Results show that more education is associated with lower activation of the left medial superior frontal gyrus (BA8) in the 1-back condition and a greater activation of the right caudate nucleus in the 2-back condition. The caudate and frontal activations are task-positive and task-negative regions, respectively. Moderation analyses indicate that the effect of age on performance is less detrimental in participants with higher caudate activation in the 2-back condition. Overall, these results suggest that cognitive reserve is explained by a superior ability to flexibly engage greater or novel activation as cognitive demand increases

    The diverse nature of island isolation and its effect on land bridge insular faunas

    Get PDF
    Aim: Isolation is a key factor in island biology. It is usually defined as the distance to the geographically nearest mainland, but many other definitions exist. We explored how testing different isolation indices affects the inference of impacts of isolation on faunal characteristics. We focused on land bridge islands and compared the relationships of many spatial and temporal (i.e., through time) isolation indices with community‐, population‐ and individual‐level characteristics (species richness, population density and body size, respectively). Location: Aegean Sea islands, Greece. Time period: Current. Taxon: Many animal taxa. Methods: We estimated 21 isolation indices for 205 islands and recorded species richness data for 15 taxa (invertebrates and vertebrates). We obtained body size data for seven lizard species and population density data for three. We explored how well indices predict each characteristic, in each taxon, by conducting a series of ordinary least squares regressions (controlling for island area when needed) and a meta‐analysis. Results: Isolation was significantly (and negatively) associated with species richness in 10 of 15 taxa. It was significantly (and positively) associated with body size in only one of seven species and was not associated with population density. The effect of isolation on species richness was much weaker than that of island area, regardless of the index tested. Spatial indices generally out‐performed temporal indices, and indices directly related to the mainland out‐performed those related mainly to neighbouring islands. No index was universally superior to others, including the distance to the geographically nearest mainland. Main conclusions: The choice of index can alter our perception of the impacts of isolation on biological patterns. The nearly automatic, ubiquitous use of distance to the geographically nearest mainland misrepresents the complexity of the effects of isolation. We recommend the simultaneous testing of several indices that represent different aspects of isolation, in order to produce more constructive and thorough investigations and avoid imprecise inference

    Wiedemann-Franz law and abrupt change in conductivity across the pseudogap critical point of a cuprate superconductor

    Full text link
    The thermal conductivity Îș\kappa of the cuprate superconductor La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 was measured down to 50 mK in seven crystals with doping from p=0.12p=0.12 to p=0.24p=0.24, both in the superconducting state and in the magnetic field-induced normal state. We obtain the electronic residual linear term Îș0/T\kappa_0/T as T→0T \to 0 across the pseudogap critical point p⋆=0.23p^{\star}= 0.23. In the normal state, we observe an abrupt drop in Îș0/T\kappa_0/T upon crossing below p⋆p^{\star}, consistent with a drop in carrier density nn from 1+p1 + p to pp, the signature of the pseudogap phase inferred from the Hall coefficient. A similar drop in Îș0/T\kappa_0/T is observed at H=0H=0, showing that the pseudogap critical point and its signatures are unaffected by the magnetic field. In the normal state, the Wiedemann-Franz law, Îș0/T=L0/ρ(0)\kappa_0/T=L_0/\rho(0), is obeyed at all dopings, including at the critical point where the electrical resistivity ρ(T)\rho(T) is TT-linear down to T→0T \to 0. We conclude that the non-superconducting ground state of the pseudogap phase at T=0T=0 is a metal whose fermionic excitations carry heat and charge as conventional electrons do.Comment: 10 pages, including Supplementary Materia
    • 

    corecore