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Abstract
1. The use of n-dimensional hypervolumes in trait-based ecology is rapidly increasing.  

By representing the functional space of a species or community as a Hutchinsonian 
niche, the abstract Euclidean space defined by a set of independent axes corre-
sponding to individuals or species traits, these multidimensional techniques show 
great potential for the advance of functional ecology theory.

2. In the panorama of existing methods for delineating multidimensional spaces, the 
r package hypervolume (Global Ecology and Biogeography, 23, 2014, 595–609) is cur-
rently the most used. However, functions for calculating the standard set of func-
tional diversity (FD) indices—richness, divergence and regularity—have not been 
developed within the hypervolume framework yet. This gap is delaying its full ex-
ploitation in functional ecology, meanwhile preventing the possibility to compare 
its performance with that of other methods.

3. We develop a set of functions to calculate FD indices based on n-dimensional 
hypervolumes, including alpha (richness), beta (and respective components), 
dispersion, evenness, contribution and originality. Altogether, these indices pro-
vide a coherent framework to explore the primary mathematical components 
of FD within a multidimensional setting. These new functions can work either 
with hypervolume objects or with raw data (species presence or abundance 
and their traits) as input data, and are versatile in terms of input parameters  
and options.

4. These functions are implemented within bat (Biodiversity Assessment Tools), 
an r package for biodiversity assessments. As a coherent corpus of functional 
indices based on a common algorithm, it opens the possibility to fully ex-
plore the strengths of the Hutchinsonian niche concept in community ecology  
research.
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1  | INTRODUC TION

The past two decades have seen an increasing interest on different 
facets of biodiversity, namely on the way species interact among 
them and with their environment, with the resulting exponen-
tial growth of functional ecology studies. This push was primarily 
driven by a few milestone theoretical contributions illustrating 
a way of reshaping entire areas in ecology from a functional per-
spective, including population and community ecology (Bolnick 
et al., 2011; McGill, Enquist, Weiher, & Westoby, 2006; Petchey & 
Gaston, 2002; Violle et al., 2012), conservation biology (Cadotte, 
Carscadden, & Mirotchnick, 2011; Wellnitz & Poff, 2001) and bio-
geography (Violle, Reich, Pacala, Enquist, & Kattge, 2014). This 
fast development of functional ecology theory has led to a prolif-
eration of mathematical approaches for estimating and visualizing 
functional diversity (FD; Legras, Loiseau, & Gaertner, 2018)—raw 
data, distance matrices, trees, hypervolumes, etc. (Figure 1)—as 
well as indices for measuring different mathematical facets under-
lying FD (Guillerme, Puttick, Marcy, & Weisbecker, 2020; Mouchet, 
Villéger, Mason, & Mouillot, 2010; Schleuter, Daufresne, Massol, & 
Argillier, 2010).

In the early 2000s, probably the most popular visualization of 
FD was the functional tree (Figure 1a), the distance-based dendro-
gram connecting all functional elements in the community (Petchey 
& Gaston, 2002, 2006). Nevertheless, given that trait data are mul-
tivariate in essence, there have been a recent upsurge of methods 
relying on raw position of species or individuals within a multidimen-
sional space (Guillerme et al., 2020), without transforming data into 
dissimilarities. The simpler approach is the convex hull hypervolume 

(Figure 1b), introduced by Cornwell, Schwilk, and Ackerly (2006) and 
later popularized by the r package fd (Laliberté, Legendre, & Shipley, 
2014). This is a widely used and computationally fast method; yet, 
it has some key limitations (Podani, 2009), especially the assump-
tion that there is no empty space within extreme values of traits 
(Blonder, 2016). In response to these limitations, a new family of 
probabilistic hypervolumes (Figure 1c) have since been developed, 
based on kernel density estimations (Blonder, Lamanna, Violle, & 
Enquist, 2014; Blonder et al., 2018), multivariate normal distribu-
tions (Swanson et al., 2015), dynamic range boxes (Junker, Kuppler, 
Bathke, Schreyer, & Trutschnig, 2016) or trait probability densities 
(Carmona, de Bello, Mason, & Lepš, 2016a, 2016b, 2019), among 
others.

The hypervolume r package (Blonder, 2018) is the most popular 
among these novel probabilistic methods; it uses high-dimensional 
kernel density estimations to delineate the shape and volume of the 
multidimensional space (Blonder et al., 2014, 2018). Other pack-
ages based on multidimensional spaces, such as fd (Laliberté et al., 
2014) or tpd (Carmona, de Bello, Mason, & Lepš, 2019), include a 
vast collection of indices that allow the user to explore a functional 
community based on different mathematical aspects of FD, namely 
the richness, divergence and regularity components (Pavoine & 
Bonsall, 2011; Tucker et al., 2017). Conversely, hypervolume was 
not explicitly developed for functional analyses—for example, it is 
often used to explore bioclimatic niches (Blonder, Lamanna, Violle, 
& Enquist, 2017)—and as yet, analogous FD indices have not been 
implemented. This gap is hindering the use of hypervolume in trait-
based ecology and is preventing the possibility to fully compare its 
performance with that of alternative methods.

F I G U R E  1   Three examples of mathematical representations of functional diversity (FD) of communities. Examples are based on two 
hypothetical traits and two communities, represented in turquoise and orange. (a) The trait space can be represented as a functional 
dendrogram (=tree), whose construction is based on a trait-based distance matrix among species. Using this framework, the functional 
richness of a community is estimated as the total branch length of a tree linking all species represented in such community—in the example, 
the FD of a community with three (in turquoise) and five species (in orange) are shown. (b) The trait space can be represented as the 
minimum convex hull comprising the species occupying the trait space. The functional richness of a community is estimated as the area 
of the convex hull. (c) The trait space can be constructed using kernel density hypervolumes, whereby it is approximated as a cloud of 
stochastic points sampled based on a set of observations (e.g. the traits of the species in the community). The functional richness of the 
community is estimated as the volume of the hypervolume delineated by the stochastic points

(a) (b) (c)
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Here, we describe a new set of R functions (Table 1; Figure 2) to 
calculate the analogous of standard functional metrics with kernel den-
sity n-dimensional hypervolumes. These functions are made available 
through bat (Biodiversity Assessment Tools; Cardoso, Mammola, Rigal, & 
Carvalho, 2020), an r package that provides an assortment of functions 
for exploring taxonomic (TD), phylogenetic (PD) and functional (FD) 
components of biological diversity (Cardoso, Rigal, & Carvalho, 2015).

2  | NE W FUNC TIONALITIES IN b at

2.1 | Input data and domain of applicability

The new functions presented here represent the analogous of the 
functional indices that were originally developed in bat for phyloge-
netic and functional trees (Cardoso et al., 2015). The calculation of the 
new indices based on hypervolumes requires the user to input either: 

1. A ‘Hypervolume’ class object;
2. A ‘HypervolumesList’ class object; or
3. Raw data matrices with species composition of the communities 

and their functional traits.

Objects of class ‘Hypervolume’ and ‘HypervolumeList’ can 
be constructed outside the bat environment, using the function hy-
pervolume in the hypervolume package (Blonder, 2018). Alternatively, 
hypervolumes can be constructed directly within bat by feeding the 
functions with raw data, namely a sites × species matrix with incidence 
or abundance data about the species in the community and a species × 
traits matrix (or individuals if species-level analyses are done). If abun-
dance data are used (abund = TRUE), each observation is weighted by 
replicating it times the abundance in the estimation of the hypervolume.

Stochastic points determining the shape and volume of the hy-
pervolume (Figure 1c) are estimated in hypervolume using three al-
ternative methods (Blonder, 2018): high-dimensional kernel density 

TA B L E  1   Classification of the new functional indices using the Pavoine–Bonsall scheme. The row entries distinguish between indices 
calculated at the observation level or hypervolume levels (within and between), while the column entries represent the three dimensions of 
richness, divergence and regularity (Pavoine & Bonsall, 2011; Tucker et al., 2017)

Functional diversity component
[following the Pavoine–Bonsall (2011) scheme for classifying biodiversity metrics]

Richness
(indices reflecting the 
sum of difference among 
observations)

Divergence
(indices reflecting the average difference 
among observations)

Regularity
(indices reflecting 
how regular the 
difference among 
observations are)

Observation level
(species within 

community, 
individuals of a 
species, etc.)

Definition How unique an observation 
within the total trait space is

Dissimilarity between observations within 
the total trait space

n/a

Calculation Net contribution of the 
observation to the total 
volume of the hypervolume

Average dissimilarity between the 
observation and a sample of random 
points within the boundaries of the 
hypervolume

R function kernel.contribution kernel.originality

Hypervolume level 
within

(properties of the trait 
space of a species or 
a community)

Definition Total amount of trait space 
available

How spread and dense is the trait space How regular the trait 
space is

Calculation Volume of the hypervolume Average difference between the trait 
space centroid and random points within 
the boundaries of the hypervolume

Overlap between 
the observed 
hypervolume and a 
theoretical, perfectly 
even hypervolume

R function kernel.alpha kernel.dispersion kernel.evenness

Hypervolume level 
between

(between species or 
communities)

Definition How dissimilar two or more 
trait spaces are

n/a n/a

Calculation Replacement and net 
difference in amplitude 
components of 
hypervolumes (kernel.
beta) or other measures 
of centroid distance, 
intersection or overlap 
(kernel.similarity)

R function kernel.beta kernel.
similarity

Abbreviation: n/a, not available.
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F I G U R E  2   Graphical illustration of each new functions based on hypothetical two-dimensional hypervolumes representing functional 
communities. (a) kernel.alpha measures functional richness as the total volume of the hypervolume. (b) kernel.beta measures 
functional dissimilarity between hypervolumes using the βtotal = βreplacement + βrichness partition framework (Carvalho & Cardoso, 2018).  
(c) kernel.originality is the average distance of the observation and a sample of stochastic points constituting the hypervolume, thus 
measuring how unique is the position of individuals observations in the trait space. (d) kernel.contribution measures the contribution 
of each observation to the total volume of the trait space using a leave-one-out approach. In this example, the contribution of A is negative, 
because the observation is clustered with other observations, which leads a higher proportion of stochastic points to cluster in the vicinity 
of these observations. By removing A, the stochastic points are ‘freer’ to spread in the trait space, which results in a slight increase in the 
volume. Instead, the contribution of B is positive, since the hypervolume constructed without this observations is less voluminous than the 
initial one. (e) kernel.dispersion measures how spread is the trait space, and is estimated either as the average distance between a 
sample of stochastic points and the hypervolume centroid or, alternatively, as the average distance between a sample of stochastic points. 
(f) kernel.evenness measures the regularity of stochastic points distribution within the total trait space. Evenness is calculated as the 
overlap between the input hypervolume and a second, imaginary hypervolume where traits and abundances are evenly distributed within 
their possible range (Carmona et al., 2016b)

(a) (b)

(c) (d)

(e) (f)
maximizing

×
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estimation (KDE; method = ‘gaussian’; Blonder et al., 2014), 
convex hull generation procedure (method = ‘box’) or support 
vector machine (SVM) delineation (method = ‘SVM’; Blonder 
et al., 2018). Currently bat supports all methods, but we recommend 
KDE hypervolumes (‘gaussian’), because other methods assume 
the probability density to be constant throughout the distribution. 
The convex hull delineation (‘box’) provides a representation of the 
trait space similar to that of the package fd. Since this method is 
computationally faster than the others, it can be useful for a quick 
explorative screening of the trait space. The properties of SVM hy-
pervolumes have not been studied yet.

Two or more hypervolumes can only be compared if they are 
constructed using the same number (and type) of traits. Traits 
should either not be highly correlated (threshold at Pearson 
|r| ≥ 0.8; Blonder, 2018), or transformed through different means 
(e.g. PCoA) so to have orthogonal hypervolume axes. Although 
traits should preferentially be continuous variables, transfor-
mation also allows implementing categorical traits (Carvalho & 
Cardoso, 2018).

While the new bat functions have been developed for trait-based 
hypervolumes, these can also be applied to other types of input data, 
for example to explore bioclimatic niches (see, e.g. Zhang, Mammola, 
McLay, Capinha, & Yokota, 2020).

2.2 | Best practice and recommendation

Given that the density and positions of stochastic points in the trait 
space are probabilistic, the output of each FD index will intimately 
depend on the quality of input hypervolumes. Important factors and 
parameters to consider are as follows:

1. If enough observations are available for hypervolume delineation;
2. The algorithm to be used for hypervolume construction; and
3. The choice of bandwidths and other input parameters.

We refer the reader to Blonder et al. (2014, 2018) for details on 
these features.

The number of traits used for hypervolume delineation is a critical 
feature to consider as well, directly translating in the number of dimen-
sions (=axes). As dimensionality gets high, a multidimensional space 
is subject to the ‘curse of dimensionality’ (Bellman, 1957), whereby 
stochastic points will become sparser and will ‘migrate’ towards the 
hypervolume boundaries (Blonder, 2016; Mammola, 2019; Guillerme 
et al., 2020). Also, in high-dimensional settings, the probability of over-
lap between any two hypervolumes will decrease (Mammola, 2019), 
thus affecting the estimation of dissimilarity indices (functions 
kernel.beta and kernel.similarity). Insofar as computation 
time also scale exponentially with dimensionality, whenever possible 
we recommend keeping the number of dimensions low (e.g. 3–5).

When comparing multiple communities in terms of FD, we rec-
ommend to follow the best practice for assessing the similarity of 
n-dimensional hypervolumes (Mammola, 2019).

2.3 | Function description

2.3.1 | kernel.alpha

This function calculates functional richness of the trait space 
(Figure 2a). Richness is simply the total volume of the functional hy-
perspace, as returned by the function get _ volume (Blonder, 2018).

2.3.2 | kernel.beta

This function estimates functional beta diversity based on the 
framework recently proposed by Carvalho and Cardoso (2018). It 
computes a pairwise decomposition of the overall differentiation 
among kernel hypervolumes (βtotal) into two components: the re-
placement of space between hypervolumes (βreplacement) and gain/
loss of space enclosed by each hypervolume (βrichness). In other words, 
this approach decomposes beta diversity into its drivers in a similar 
way as already proposed for functional trees (Cardoso et al., 2014), 
having therefore several advantages over other options that do not 
reflect the true drivers of beta diversity (see discussion in Carvalho, 
Cardoso, Borges, Schmera, & Podani, 2013). Each beta component 
can range from 0 (when hypervolumes are identical) to 1 (fully dis-
junct hypervolumes), and βtotal = βreplacement + βrichness (see formula in 
Figure 2b).

2.3.3 | kernel.originality

A measure of the originality of each observation used to construct the 
hypervolume (Pavoine, Ollier, & Dufour, 2005), calculated as the average 
distance between each observation to a sample of stochastic points within 
the boundaries of the hypervolume (Figure 2c). The number of sample 
points to be used in the estimation is controlled by the frac parameter. 
By setting relative = TRUE, the originality values are returned relative 
to the most original species (which will take the value of 1).

2.3.4 | kernel.contribution

This function evaluates the contribution of each observation to the 
total volume of the hypervolume (Figure 2d). It does so via a leave-
one-out approach, whereby the contribution of each observation is 
calculated as the difference in volume between the full hypervolume 
and a second hypervolume constructed without that specific observa-
tion. Note that, interestingly, the contribution of an individual obser-
vation could be negative, if the removal of this observation increases 
the volume of the total hypervolume. This might happen, although not 
always, in cases when the presence of a given species decreases the 
average distance between all the species in the community, that is, 
when a given species is close to the ‘average’ species of that commu-
nity, making that community less diverse in some sense. This does not 
happen in the case of functional dendrograms or convex hulls.
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2.3.5 | kernel.dispersion

Dispersion (Figure 2e) is calculated as the average distance between 
a sample of stochastic points and the hypervolume centroid (Laliberté 
& Legendre, 2010), thus making a close analogy with the implementa-
tion of divergence indices in fd (Laliberté et al., 2014) or tpd (Carmona 
et al., 2019). An alternative calculation is also implemented (func = 
‘dissimilarity’), whereby dispersion is expressed as the average 
pairwise distance of a sample of stochastic points in the trait space. 
The latter makes the closest analogy with the dispersion of a phyloge-
netic or functional tree (function dispersion; Cardoso et al., 2015). 
In both cases, the number of stochastic points used in the estimation 
is controlled by the frac parameter.

2.3.6 | kernel.evenness

This function measures the evenness of a hypervolume, namely the 
regularity of functional elements distribution within the total trait 
space (Mason, Mouillot, Lee, & Wilson, 2005; Villéger, Mason, & 
Mouillot, 2008). Following a similar approach to that of Carmona, de 
Bello, Mason, and Lepš (2016b) and Carmona et al. (2019), evenness is 
calculated as the overlap between the input hypervolume and a sec-
ond, imaginary hypervolume where traits and abundances are evenly 
distributed within their possible range (Figure 2f).

2.3.7 | kernel.similarity

A versatile function to compare multiple hypervolumes, by calculating 
their pairwise centroid distance, minimum distance, intersection, and 
Jaccard and Sørensen–Dice similarity (details in Mammola, 2019).

3  | E X AMPLE ANALYSIS

To illustrate the new functions, we provide an example analysis 
based on a study of ground-dwelling arthropods in sampling plots 
characterized by different levels of urbanization within the munici-
pality of Turin (NW-Italy; Piano, Giuliano, & Isaia, 2020). In order to 
test the effects of patch isolation within the urban matrix on the 
FD of arthropod assemblages, the authors identified two types of 
subplots within each plot, where they used pitfall traps to sample 
ground-dwelling fauna. In particular:

1. Isolated subplots are patches within a traffic roundabout, sur-
rounded by roads; and

2. Connected subplots are patches in green areas, connected with 
the surrounding environmental matrix.

We extracted from this database a random subset of 60 subplots, 
30 isolated and 30 connected. For each subplot, we took abundance 
data for the spiders' community and three traits for each species: 

body length, dispersal strategy and hunting strategy. Categorization 
of hunting strategies was based on Cardoso, Pekár, Jocqué, and 
Coddington (2011), whereas three types of dispersal (1 = non- or 
sporadic ballooners; 2 = ballooners as juveniles; 3 = ballooners at all 
life stages) were assigned by Piano et al. (2020) based on literature 
(Bell, Bohan, Shaw, & Weyman, 2005; Blandenier, 2009; Simonneau, 
Courtial, & Pétillon, 2016).

We used the new functions to explore FD of spider commu-
nities in isolated versus connected subplots, using bat version 
2.0.1. (Cardoso et al., 2020) and hypervolume version 2.0.11. 
(Blonder, 2018). Since spiders' functional traits included two cate-
gorical traits, we followed the approach proposed by Carvalho and 
Cardoso (2018) to use categorical variables with hypervolumes. 
We applied a Gower dissimilarity measure (Gower, 1971) to the 
complete trait matrix and then, we analysed the resulting distance 
matrix through principal coordinate analysis (PCoA) in order to ex-
tract orthogonal axes for hypervolume delineation. We retained 
the first three PCoA axes (cumulatively explaining 95.5% of the 
total variance) to construct hypervolumes, using the Gaussian 
method and a default bandwidth (Blonder et al., 2018). We then 
estimated functional richness of each community with kernel.
alpha.

On average, connected subplots had a slightly higher func-
tional richness (Figure 3a). In fact, connected subplots are more 
easily colonized by a larger number of spider species, that in turn 
accounts for a greater diversity of traits. Conversely, isolated 
subplots are mostly colonized by a subset of specialized species 
possessing specific dispersal traits (smaller body size, greater 
dispersal ability) allowing them to reach these isolated habitats. 
Traits of spider communities in connected subplots were not sig-
nificantly more dispersed (kernel.dispersion, calculated with 
func = ‘divergence’; Figure 3b) or homogeneous (kernel.
evenness; Figure 3c) than those in isolated subplots (disper-
sion: t test = 1.25, df = 44.94, p = 0.22; evenness: t test = –0.13, 
df = 57.04, p = 0.89).

We explored dissimilarities (β) in traits among communities 
inhabiting the two different types of subplots with the function 
kernel.beta. βtotal values were higher in pairwise comparisons be-
tween communities in isolated subplots, whereas communities in 
connected subplots were in general more similar to one another 
(Figure 4d). This result suggests that colonization of traffic round-
about is less predictable and more subject to higher differences in 
richness: only a subset of spiders with higher dispersal potential and 
probably higher resistance to disturbed habitats are able to reach 
and survive in isolated subplots. This is further confirmed by the 
lower values of βreplacement (Figure 3e) and higher values of βrichness 
(Figure 3f) in isolated subplots.

By using the function kernel.contribution, we inferred 
that Nurscia albomaculata (Lucas, 1846) (Titanoecidae) was the 
species contributing the most to the trait space in isolated sub-
plots, being the only species of large size (>10 mm) and with low 
dispersal (no ballooning) that fell in pitfall traps in isolated plots. 
Thus, it contributed unique traits to roundabout communities. We 
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finally used kernel.originality to estimate the functional original-
ity of each species included in the dataset, finding low variability 
in originality values for species in both isolated and connected 

subplots. This is not unexpected since the pool of species found 
in urban environments are in general already filtered for a small 
diversity of traits (McKinney, 2006).

F I G U R E  3   Results of the example 
analysis based on Piano et al. (2020) 
dataset. (a–c) Functional richness, 
dispersion and evenness of spider 
communities in connected and isolated 
subplots. (d–f) Density of functional beta 
diversity values for pairwise comparison 
of communities in connected and 
isolated subplots. Total functional beta 
diversity (βtotal) is split in two components: 
βreplacement is turnover in functional 
composition explained by replacement of 
space between hypervolumes, and βrichness 
is the turnover in functional composition 
explained by species loss/gain of space 
enclosed by each hypervolume
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F I G U R E  4   Pairwise Pearson's correlations among the indices calculated within bat and with other packages for functional diversity 
analyses in a multidimensional space (FD, TPD). (a and b) Correlations among indices calculated at the hypervolume (a) and observation  
(b) levels. (c–e) Correlations among functional richness (c), divergence/dispersion (d) and evenness (e) calculated with the r package bat 
(Cardoso et al., 2015, 2020), fd (Laliberté et al., 2014) and tpd (Carmona et al., 2019). The analyses are based on the dataset by Piano 
et al. (2020). For each panel plot, histograms on the diagonal display the distribution of values. Bivariate scatter plots are displayed below 
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visual presentation
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4  | CORREL ATION WITH OTHER INDICES

Using the same dataset, we also explored the pairwise correlations 
among new indices in bat, as well as the correlation with analogous 
indices calculated with fd (Laliberté et al., 2014) and tpd (Carmona 
et al., 2019). To the best of our knowledge, these are the only other 
r packages including functions for calculating richness, divergence 
and regularity components of FD in a multidimensional space.

All community-level indices calculated with bat were rather in-
dependent to one another (all |r| < 0.5; Figure 4a), and thus able to 
capture distinct facets of FD (Mouchet et al., 2010). The correla-
tion between the two individual-level indices was also very low 
(r = 0.15; Figure 4b). In fact, contribution and originality are able 
to capture the contribution of each observation to the richness 
and divergence components of FD, respectively, allowing to map 
different components of functional rarity (Violle et al., 2017) at 
distinct scales of organizations (Carmona, de Bello, Sasaki, Uchida, 
& Pärtel, 2017).

In contrast, the new indices are more highly correlated with simi-
lar indices in fd and tpd packages in terms of richness (Figure 4c) and 
divergence components (Figure 4d), whereas low correlation was 
found for regularity (Figure 4e). These preliminary results emphasize 
the need to compare divergence among frameworks and properties 
of the existing indices, for example using simulations to test for dif-
ferent combinations of traits, composition of communities and input 
parameters.

5  | CONCLUSIONS

By developing functions for estimating the primary facets of FD with 
hypervolume, we open up the potential to fully exploit the strengths 
of the Hutchinsonian niche concept (Hutchinson, 1957) in functional 
ecology research (Blonder, 2019). As in the case of other frameworks 
for estimating facets of FD, these new functions can be used to an-
swer a large assortment of questions. Alpha and beta FD allow us 
to understand the richness of a trait space, and in which compo-
nents multiple trait spaces differ, namely the pairwise richness or 
replacement differences in term of functional traits. Contribution 
and originality allow to map which are the rare functional elements 
in the community. Therefore, these indices yield potential to help in 
targeting keystone species or those of high conservation concern 
(Carmona et al., 2017; Violle et al., 2017). Dispersion and evenness 
provide a quantification of the distribution of elements in the trait 
space enabling, for example, to compare whether multiple commu-
nities are differentially harmonious/unbalanced in their functional 
composition.

5.1 | Citation

Researchers using these functions should cite this article and in 
addition can also cite the bat package directly. Updated citation 

information can be obtained by typing in the r console the com-
mand: citation(‘bat’). Parameters used for constructing hyper-
volumes have also to be specified, referring to the publications by 
Blonder et al. (2014, 2018).
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