14 research outputs found

    Tele-education model for primary care providers to advance diabetes equity: Findings from Project ECHO Diabetes

    Get PDF
    IntroductionIn the US, many individuals with diabetes do not have consistent access to endocrinologists and therefore rely on primary care providers (PCPs) for their diabetes management. Project ECHO (Extension for Community Healthcare Outcomes) Diabetes, a tele-education model, was developed to empower PCPs to independently manage diabetes, including education on diabetes technology initiation and use, to bridge disparities in diabetes.MethodsPCPs (n=116) who participated in Project ECHO Diabetes and completed pre- and post-intervention surveys were included in this analysis. The survey was administered in California and Florida to participating PCPs via REDCap and paper surveys. This survey aimed to evaluate practice demographics, protocols with adult and pediatric T1D management, challenges, resources, and provider knowledge and confidence in diabetes management. Differences and statistical significance in pre- and post-intervention responses were evaluated via McNemar’s tests.ResultsPCPs reported improvement in all domains of diabetes education and management. From baseline, PCPs reported improvement in their confidence to serve as the T1D provider for their community (pre vs post: 43.8% vs 68.8%, p=0.005), manage insulin therapy (pre vs post: 62.8% vs 84.3%, p=0.002), and identify symptoms of diabetes distress (pre vs post: 62.8% vs 84.3%, p=0.002) post-intervention. Compared to pre-intervention, providers reported significant improvement in their confidence in all aspects of diabetes technology including prescribing technology (41.2% vs 68.6%, p=0.001), managing insulin pumps (41.2% vs 68.6%, p=0.001) and hybrid closed loop (10.2% vs 26.5%, p=0.033), and interpreting sensor data (41.2% vs 68.6%, p=0.001) post-intervention.DiscussionPCPs who participated in Project ECHO Diabetes reported increased confidence in diabetes management, with notable improvement in their ability to prescribe, manage, and troubleshoot diabetes technology. These data support the use of tele-education of PCPs to increase confidence in diabetes technology management as a feasible strategy to advance equity in diabetes management and outcomes

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals

    No full text
    Open-source automated insulin delivery systems, commonly referred to as do-it-yourself automated insulin delivery systems, are examples of user-driven innovations that were co-created and supported by an online community who were directly affected by diabetes. Their uptake continues to increase globally, with current estimates suggesting several thousand active users worldwide. Real-world user-driven evidence is growing and provides insights into safety and effectiveness of these systems. The aim of this consensus statement is two-fold. Firstly, it provides a review of the current evidence, description of the technologies, and discusses the ethics and legal considerations for these systems from an international perspective. Secondly, it provides a much-needed international health-care consensus supporting the implementation of open-source systems in clinical settings, with detailed clinical guidance. This consensus also provides important recommendations for key stakeholders that are involved in diabetes technologies, including developers, regulators, and industry, and provides medico-legal and ethical support for patient-driven, open-source innovations

    Multicenter, Randomized Trial of a Bionic Pancreas in Type 1 Diabetes

    No full text
    BACKGROUND: Currently available semiautomated insulin-delivery systems require individualized insulin regimens for the initialization of therapy and meal doses based on carbohydrate counting for routine operation. In contrast, the bionic pancreas is initialized only on the basis of body weight, makes all dose decisions and delivers insulin autonomously, and uses meal announcements without carbohydrate counting. METHODS: In this 13-week, multicenter, randomized trial, we randomly assigned in a 2:1 ratio persons at least 6 years of age with type 1 diabetes either to receive bionic pancreas treatment with insulin aspart or insulin lispro or to receive standard care (defined as any insulin-delivery method with unblinded, real-time continuous glucose monitoring). The primary outcome was the glycated hemoglobin level at 13 weeks. The key secondary outcome was the percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter; the prespecified noninferiority limit for this outcome was 1 percentage point. Safety was also assessed. RESULTS: A total of 219 participants 6 to 79 years of age were assigned to the bionic-pancreas group, and 107 to the standard-care group. The glycated hemoglobin level decreased from 7.9% to 7.3% in the bionic-pancreas group and did not change (was at 7.7% at both time points) in the standard-care group (mean adjusted difference at 13 weeks, -0.5 percentage points; 95% confidence interval [CI], -0.6 to -0.3; P\u3c0.001). The percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter did not differ significantly between the two groups (13-week adjusted difference, 0.0 percentage points; 95% CI, -0.1 to 0.04; P\u3c0.001 for noninferiority). The rate of severe hypoglycemia was 17.7 events per 100 participant-years in the bionic-pancreas group and 10.8 events per 100 participant-years in the standard-care group (P = 0.39). No episodes of diabetic ketoacidosis occurred in either group. CONCLUSIONS: In this 13-week, randomized trial involving adults and children with type 1 diabetes, use of a bionic pancreas was associated with a greater reduction than standard care in the glycated hemoglobin level. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT04200313.)

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings.

    Full text link
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments
    corecore